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1 Grundlegende Ergebnisse im

Basismodell

Agenda: Entwickelt wird ein Rahmen für die relative

Wertpapierbewertung. Wir betrachten arbitragefreie (Modell-

)Finanzmärkte und entwickeln insbesondere das Risikoneu-

tralbewertungsprinzip und die beiden Hauptsätze der Wert-

papierbewertung.

Was soll man sich vorstellen? Wir stellen uns eine Finanz-

mathematikerin vor, die auf rationaler Basis eine ihr vor-

gelegtes Finanzprodukt bewerten will. Die Preise anderer

Finanzprodukte kann die Finanzmathematikerin beobach-

ten. Mit Blick auf die anderen Finanzpreise, welcher Preis

ist rational für das vorgelegte Finanzprodukt.

Ein Finanzmathematiker ist Spezialist für ein Wertpapier.

Er fragt sich, ob der Preises seines Wertpiers mit den Prei-

sen anderer Wertpapiere konsistent ist oder ob eine Fehl-

bewertung vorliegt ......



1.1 De�nitionen

1.1.1 De�nition/Spezi�kation:DasEin-Perioden-Fi-

nanzmarktmodell (EPFMM) ist durch die folgenden

Angaben de�niert (spezi�ziert):

� Es gibt zwei Zeitpunkte T = {t0, t1}.

In t = t0 kauft der Anleger Wertpapiere und legt

Geld am Geldmarkt an (der Anleger hat Ausgaben).

In t = t1 ergeben sich die Auszahlungen/Endwerte

der Wertpapieren an den Anleger.

Für die Entwicklung des Modells sind die konkreten

Zeitpunkte von t0 und t1 irrelevant. Deshalb normie-

ren wir den Zeitstrahl t0 = 0 und t1 = 1. Wir fassen

t0 = 0 als Entscheidungszeitpunkt auf. In t = t1 rea-

lisiert sich das Ergebnis des Zufallsexperiments und

die damit die Endwerte der Anlageformen.

� Es seiK ∈ N. Es gibtK Zustände Ω = {ω1, ..., ωK}
sowie einWahrscheinlichkeitsmaÿ P auf (Ω,P(Ω))mit

pk := P(ωk) := P({ωk}) > 0 für k = 1, ..., K.

Wir stellen uns vor, dass in t = 1 einer der K Zu-

stände mit Wahrscheinlichkeit pk eintritt.

Ein solches Wahrscheinlichkeitsmaÿ P auf einem end-

lichen messbaren Raum (Ω,P(Ω)) ist bekanntlich durch
die Angabe der Zähldichte pk ∈ (0, 1), k = 1, ..., K



de�niert. Die Wahrscheinlichkeiten aller anderen Er-

eignisse ergeben gemäÿ

P(A) =
∑

k :ωk∈A

pk, A ⊂ Ω.

Am Rande: In der Wahrscheinlichkeitstheorie muss

nicht unbedingt jedeWahrscheinlichkeit pk strickt grö-

ÿer Null sein.

� Anleger haben Zugang zum Geldmarkt. Wenn ein

Anleger in t = 0 eine Geldeinheit (GE) auf das Geld-

marktkonto einzahlt, dann erhält er in t = 1 die Aus-

zahlung R > 0. Mit r = R − 1 > −1 bezeichnen wir

den Geldmarktzinssatz.

Wir setzen nicht voraus, dass Zinsen nicht-negativ

sind. Wir benötigen lediglich r > −1, denn wir wer-

den regelmäÿig beim diskontieren durch 1 + r divi-

dieren. Wir setzen also stets r > −1 bzw. R > 0

voraus.

� Anleger können zum Zeitpunkt t = 0 in N ∈ N
Wertpapiere investieren; diese Wertpapiere nennen

wir Basiswertpapiere.1 Die Preise der Wertpapiere

1Zusammen mit dem Geldmarkt bilden die Wertpapier die Basisanlagemöglich-
keiten des Modells.



in t = 0 fassen wir in einem Vektor

S0 =


S1
0

S2
0

...

SN0

 ∈ RN

zusammen. Die Wertpapierpreise in t = 1 sind Zu-

fallsvariablen mit Realisierungen Sj1(ωk) ∈ R, k =

1, ..., K, j = 1, ..., N .

Wir können die Realisierungen der Wertpapierpreise

in einer Matrix zusammenfassen
S1
1(ω1) ... SN−11 (ω1) SN1 (ω1)

S1
1(ω2) ... SN−11 (ω2) SN1 (ω2)

: : : :

S1
1(ωK) ... SN−11 (ωK) SN1 (ωK)

 ∈M(K,N ;R)

▶ Vorgegeben (exogen) werden also die folgenden Werte: r,

Sj0, S
j
1(ωk) sowie die Wahrscheinlichkeiten pk; diese Werte

sind exogen.

t = 0: WP werden gekauft &
Einzahlung am GM getätigt

t = 1: ω ∈ Ω wird gezogen
Auszahlungen �nden statt

Abbildung 1.1.1: Das Schema zeigt die Zeitschiene des
EPFMMs



1.1.2 Beispiel: Ein sehr kleines EPFMM wird durch die

folgende Spezi�kation de�niert. Es sei r = 1
9 = 0.11, S0 =

5, S1(ω1) =
60
9 , S1(ω2) =

40
9 . p1 =

3
4, p2 =

1
4. Wenn der An- Auch als Dezimalzahl mit

Komma ....

leger 5 GE auf das Geldmarktkonto einzahlt, dann ergibt

sich in t = 1 eine sichere Zahlung von 50
9 = 5

(
1 + 1

9

)
; der

Bruttozins ist demnachR = 10
9 . Wenn der Anleger für 5 GE

das Wertpapier kauft, dann ergibt sich eine unsichere Aus-

zahlung. Mit Wahrscheinlichkeit p1 beträgt die Auszahlung
60
9 und mit Wahrscheinlichkeit p2 ist die Auszahlung 40

9 . Die Auszahlung oder besser

Zahlung an ....

erwartete Auszahlung ist E(S1) =
3
4
60
9 +

1
4
40
9 = 55

9 . In beiden

Anlagevarianten setzt der Investor 5 GE. Bei der Anlage

am Geldmarktkonto ergibt sich eine sichere Zahlung von
50
9 . Wenn er das Wertpapier kauft, dann ist Auszahlung

eine Lotterie mit Erwartungswert 55
9 .

Bei der Anlage am Geldmarkt ist die Rendite 1
9. Bei der

Anlage in das WP1 ist die Rendite
60
9 −

45
9

45
9

= 15
45 = 1

3 oder
40
9 −

45
9

45
9

= −5
45 = −1

9. Die erwartete Rendite für den Geld-

markt ist (natürlich) 1
9. Für das WP1 ist die erwartete

Rendite 3
4
1
3+

1
4
−1
9 = 9

36−
1
36 =

8
36 und es ist 8

36 >
4
36 =

1
9. Die

Anlage in das Wertpapier ist zwar riskant hat aber dafür

eine höhere erwartete Rendite. Der Anleger wird sozusagen

für die Übernahme des Risikos kompensiert. Man nennt die

Di�erenz 8
36 −

4
36 =

4
36 Risikoprämie.

1.1.3 Bemerkung: i.) Wir verwenden für Wertpapierprei-

se Sjt (ωk) die folgenden Konventionen. Der Subindex t

von Sjt (ωk) gibt den Zeitpunkt an. Der Superindex j von



Sjt (ωk) gibt die Wertpapiernummer an. Das Argument ωk

von Sjt (ωk) gibt den Zustand an.

ii.) Eine Zufallsvariable X : Ω → R mit einen endlichen

De�nitionsbereich Ω = {ω1, ..., ωK} werden wir mit dem

Vektor

X =


X(ω1)

...

X(ωK)


identi�zieren. Wir werden also wahlweise von der Zufalls-

variable X : Ω → R, vom Vektor X ∈ RK oder vom

Zahlungspro�lX ∈ RK sprechen. Missverständnisse kön-

nen bei genauer Betrachtung nicht entstehen.

Wir können je nach Perspektive � Vektoren bzw. Zufallsva-

riablen � Resultate der Linearen Algebra bzw. der Wahr-

scheinlichkeitstheorie verwenden.

iii.) Wir haben die Anlageform mit Auszahlung R als Geld-

marktkonto interpretiert; R ist dann die Bruttoverzin-

sung (also einschlieÿlich der Rückzahlung in t = 1 des in

t = 0 eingezahlten Betrags). Alternativ kann man Geld-

marktanteile betrachten, deren Preis im Betrachtungs-

zeitpunkt auf R0 = 1 normiert ist, d.h. die im Betrach-

tungszeit pari emittiert werden. Die garantierte Auszah-

lung in t = 1 ist R1 = R. In diesem Fall ist der Preis bzw.

die AuszahlungR1 = R in t = 0 bekannt. Geldmarktanteile

haben also einen Preis der sich in Mehrperiodenmodellen

ändern kann, aber diese Änderung ist anders als bei den



riskanten Wertpapieren schon vorab bekannt. noch ausführlicher ....

Wir haben die Anlageform Geldmarkt aus zwei Gründen

extra modelliert: (1) Diese Anlageform stellt die risikolo- Numeriare ... Geld ...

Auszahlung in

Geldeinheiten ...se Anlageform dar (risikolos ist die Anlageform jedenfalls

für eine Periode). (2) Diese Anlageform dient typischerwei-

se als Standard-Numeriare; was das bedeutet werden

wir später erläutern.

1.1.4 De�nition: Eine Handelsposition (Handelsstra-

tegie, Portfolio) wird durch einen Vektor h = (h0, h1, ..., hN)
T ∈

RN+1 repräsentiert. Dabei bezeichnet h0 den am Geldmarkt Wir reservieren h für Han-

delspositionen.

investierten/geliehenen Betrag in Geldeinheiten und hj, j =

1, ..., N die Anzahl der Stücke des Wertpapiers mit der

Wertpapiernummer j. Wir werden die für uns im folgen-

den selbstverständliche Angabe ∈ RN+1 oft weglassen, d.h.

wenn nichts anderes angeben ist, dann ist ein h ein Vektor

des RN+1, der eine Handelsposition repräsentiert.

Wenn wir Geldmarktanteile betrachten, dann entspricht

h0 dem Bestand der Geldmarktanteile, die in der Einheit

Stücke gemessen werden.

1.1.5 Bemerkung: i.) Es sei h eine Handelsposition und

j ∈ {1, 2, ..., N}. Da wir hj ∈ R zulassen, lassen wir ins-

besondere auch hj < 0 zu; das sind sogenannte Leerver-

käufe.

Dieser Text ist nicht der richtige Ort, um die teilweise



komplexen institutionellen Details von Leerverkäufen zu er-

läutern. Nützlich ist aber die folgende Skizze: Wenn man ..... insb Quelle zu den

inst Details

Wertpapiere, die man nicht besitzt, verkaufen will, dann

borgt man sich diese. Die Leihe wird von einem Vermittler

organisiert. Man verkauft dann die geborgten Wertpapiere Broker ....?

amWertpapiermarkt. Am Ende der Leihfrist kauft man die

Wertpapiere am Wertpapiermarkt und gibt sie zurück. Der

Besitzer, dessen Wertpapiere geborgt und verkauft werden,

bemerkt diesen Vorgang nicht. Während der Leihfrist an-

fallende Dividenden bzw. Coupons muss der Leerverkäufer

an den Inhaber des geliehen Wertpapier zahlen.

ii.) Wir behandeln die Fälle h0 < 0 (man leiht sich Geld)

und h0 > 0 (man verleiht Geld) nicht separat als zwei Fälle

mit unterschiedlichen Zinsen, sondern einheitlich h0 ∈ R.
Die Verzinsung für eine Anlage am Geldmarkt und für die

Kreditaufnahme auf dem Geldmarkt sind also gemäÿ An-

nahme gleich.

iii.) Die Annahme hj ∈ R, j = 1, ..., N bedeutet, dass wir

die beliebige Teilbarkeit der Wertpapiere unterstellen.

Für die mathematische Analyse ist diese Annahme wich-

tig. Insbesondere können wir Methoden und Ergebnisse der

Linearen Algebra des Rn anwenden.

iv.) Die Wertpapierpreise Sjt und der Zins r sind exogen.

Das bedeutet insbesondere: Selbst wenn sich Investoren für Preisnehmer .... Ein Anle-

ger müsste seine Nachfra-

ge dosieren ....ein sehr �groÿes� h (sehr groÿe Nachfrage bzw. Angebot)

entscheiden, ändern sich die Preise bzw. der Zins nicht.



1.1.6 De�nition: Wir de�nieren die Auszahlungsma-

trix (für alle Anlagealternativen und alle Zustände) des

EPFMM als Kann man oBdA

unterstellten, dass

die Spalten von A

linear unabhängig

sind?
A =


R S1

1(ω1) ... SN−11 (ω1) SN1 (ω1)

R S1
1(ω2) ... SN−11 (ω2) SN1 (ω2)

: : : : :

R S1
1(ωK) ... SN−11 (ωK) SN1 (ωK)

 ∈M(K, 1 +N ;R).

Konventionen:

bei einer

M(K, 1 + N ;R)
Matrix gibt es eine

Spalte 0. ......

In einer Spalte 
Sj1(ω1)

...

Sj1(ωK)


stehen also die Auszahlungen einer Anlageform und in einer

Zeile (
R S1

1(ωk) ... SN1 (ωk)
)

stehen die Auszahlungen der N + 1 Anlageformen im Zu-

stand ωk. Die Auszahlung bzw. den Endwert in t = 1

des Portfolios h de�nieren2 wir als

Vh
1 = Ah.

2Warum ist das eine De�nition und keine Schlussfolgerung? Diskutieren Sie!
Denken Sie insbesondere an Menüs in Restaurants.



Ausgeschrieben haben wir also:

Vh
1 (ω1) = Rh0 + S1

1(ω1)h1 + ... + SN1 (ω1)hN

Vh
1 (ω2) = Rh0 + S1

1(ω2)h1 + ... + SN1 (ω2)hN

... ...

Vh
1 (ωK) = Rh0 + S1

1(ωK)h1 + ... + SN1 (ωK)hN .

Wir beachten, dass Vh
1 je nach Perspektive eine Zufallsva-

riable mit Werten in R bzw. ein Vektor in RK ist. Wenn

wir Vh
1 als Zufallsvariable au�assen, dann schreiben wir

Vh
1 = h0R + h1S

1
1 + ... + hNS

N
1 bzw.

Vh
1 (ω) = h0R + h1S

1
1(ω) + ... + hNS

N
1 (ω).

anstatt des Matrixprodukts Ah.

Diese De�nitionen bedeuten, dass wir lineare Preise unter-

stellen. Es gibt also keine Rabatt für Menüs .



Ferner de�niert (beachte R0 = 1)

V h
0 = R0h0 + S1

0h1 + ... + SN0 hN = hT


R0

S1
0

:

SN0



= (1 S1
0 ... SN0 )


h0

h1

:

SN0


= S̄T0h

= hT


1

S1
0

:

SN0


= h • S̄0 = S̄0 • h

denAnfangswert der Handelsposition oder den An- erweiterte Auszahlungma-

trix?

scha�ungswert der Handelsposition h in t = 0 (also

den Wert des Portfolios in t = 0 bzw. die Anschaf-

fungskosten des Portfolios in t = 0), wobei wir

S̄0 =

(
1

S0

)
=

(
R0

S0

)
∈ RN+1

de�nieren.

Wir werden gelegentlich R0 = 1 angeben, um daran zu

erinnern, dass wir diese Anlageform als Geldmarktkonto



oder als Geldmarktanteile interpretieren können.

Manchmal ist die separate Behandlung/Notation des Geld-

marktkontos lästig. Wir verwenden deshalb auch die Nota-

tion S0
0 = 1 und S0

1 = Rf
1 = R

▶Was wollen Anleger? Anleger bevorzugen ceteris paribus

einen kleinen Wert V h
0 und ceteris paribus groÿe Werte für

Vh
1,i. Wir werden uns später genauer mit Präferenzen zu

beschäftigen.

1.1.7 De�nition: Es sei h ∈ RN+1 eine Handelsposition.

Wir de�nieren die diskontierte Auszahlung der Han-

delsposition h:

V h,∗
1 =

V h
1

R
.

Ausgeschrieben gilt:

(V h
1 )
∗(ωk) =

V h
1 (ωk)

R

=
Rh0 + S1

1(ωk)h1 + ...SN1 (ωk)hN
R

= h0 +
S1
1(ωk)

R
h1 + ... +

SN1 (ωk)

R
hN .

1.1.8 De�nition: Es sei h eine Handelsposition. Dann



heiÿt

Gh = V h
1 − V h

0

= Rh0 + S1
1h1 + ... + SN1 hN − h0 − h1S1

0 − ...− hNSN0
= rh0 + (S1

1 − S1
0)h1 + ... + (SN1 − SN0 )hN

Gewinn der Handelsposition h. Gh ist natürlich nicht not-

wendigerweise nicht-negativ! Gewinn-Verlust wäre dem-

nach die bessere Bezeichnung.

Es ist also Gh(ω) = V h
1 (ω)− V h

0 für ω ∈ Ω.

Der diskontierte Gewinn der Handelsposition h wird

durch

Gh,∗ = V h,∗
1 − V h

0 =
1

R1
V h
1 − V h

0

de�niert. Vorsicht der diskontierte Gewinn nicht der

Gewinn diskontiert, denn V h
0 wird nicht diskontiert.

Genauer wäre die Formulierung Gewinn der diskontierten

Werte, aber die klingt umständlich.

Wenn die Anscha�ungskosten Null sind, dann nennen wir

Gh = V h
1 , V

h
0 = 0

einen kostenlosen Gewinn und

Gh,∗ = V h,∗
1 =

V h
1

R
, V h

0 = 0

einen kostenlosen diskontierten Gewinn.



1.1.9 Bemerkung: Es sei h ∈ RN+1 eine Handelspositi-

on. Wenn man V h
1 als Vektor au�asst, dann muss man et-

was aufpassen. Es ist dann streng genommen Gh = V h
1 −

V h
0 := V h

1 − V h
0 1, wobei

1 =


1

1

:

1

 .

V h
0 ist eine reelle Zahl und V h

1 = Ah ein Vektor. Eigentlich

ist V h
1 − V h

0 (Vektor minus Skalar) nicht de�niert.

Wir werden in der Tat öfter Anlass haben von einem Vektor

v einen Skalar α abzuziehen. Wir de�nieren

v − α := v − 1α.

1.2 Arbitrage

1.2.1 De�nition: Eine Handelsposition h heiÿtArbitra-

gemöglichkeit oder einfach Arbitrage, wenn

i.) V h
0 = 0 und

ii.) 0 ̸= Vh
1 ≥ 0

gilt. Eine Arbitragemöglichkeit hat also einerseits Anschaf-

fungskosten von Null und hat andererseits eine nicht-negative



vom Nullvektor verschiedene zukünftige Auszahlung. Zu

schön, um wahr zu sein.

▶ Wir werden im Folgenden sehr ausführlich und

genau charakterisieren, unter welche Bedingungen

es keine Arbitrage gibt.Wir betrachten zur Einführung

ein einfaches Beispiel.

1.2.2 Bemerkung: Eine Handelsposition h ist genau dann

eine Arbitrage, wenn

i.) V h
0 = 0,

ii.) Vh
1 ≥ 0 und V h

1 (ω) > 0 für mindestens ein ω ∈ Ω.

1.2.3 Satz: Eine Handelsposition h ist genau dann eine

Arbitrage, wenn

i.) V h
0 = 0,

ii.) Vh
1 ≥ 0 und P(Vh

1 > 0) > 0.

▶ Die Charakterisierung einer Arbitrage gemäÿ des obigen

Satz ist eigentlich besser, denn sie funktioniert auch für

unendliche (nicht-diskrete) Ω; vgl. Föllmer und Schied [10,

Seite 5].

1.2.4 Beispiel: Es sei wieder r = 1
9, S0 = 5, S1(ω1) =

60
9 , S1(ω2) =

40
9 . p1 =

3
4, p2 =

1
4. Gibt es in diesem EPFMM

eine Arbitragemöglichkeit?



Wenn h = (h0, h1)
T eine Handelsposition mit V h

0 = 0 ist,

dann h0 + 5h1 = 0. also h0 = −5h1. Für die Auszahlung

gilt

V h
1 = Ah =

(
10
9

60
9

10
9

40
9

)(
h0

h1

)
=

(
10
9 h0 +

60
9 h1

10
9 h0 +

40
9 h1

)

=

(
−10

9 · 5h1 +
60
9 h1

−10
9 · 5h1 +

40
9 h1

)
=

(
10
9

−10
9

)
h1

Wenn h1 = 0 gilt, dann ist V h
1 = 0. Also keine Arbitra-

gemöglichkeit. Wenn h1 > 0 gilt, dann ist V h
1 (ω2) < 0.

Also keine Arbitragemöglichkeit. Wenn h1 < 0 gilt, dann

ist V h
1 (ω1) < 0. Also keine Arbitragemöglichkeit. Es kann

also in diesem EPFMM keine Arbitragemöglichkeiten

geben.

1.2.5 Beispiel: Es sei diesmal r = 1
3, S0 = 5, S1(ω1) =

60
9 , S1(ω2) =

40
9 . p1 =

3
4, p2 =

1
4. Gibt es in diesem EPFMM

eine Arbitragemöglichkeit?

Es sei h = (5,−1)T . Dann ist V h
0 = h0+S0h1 = 5−5·1 = 0.

Für die Auszahlung gilt

V h
1 = Ah =

(
12
9

60
9

12
9

40
9

)(
5

−1

)
=

(
0
20
9

)

Also 0 ̸= Vh
1 ≥ 0. Wir haben eine Arbitrage gefunden!

Arbitrageidee: In beiden Zuständen hat die Anlage am

Geldmarkt eine mindestens so hohe Rendite, wie das Wert-



papier. Die Rendite am Geldmarkt beträgt in beiden Zu-

ständen 3
9. Die Wertpapierrendite ist 3

9 in ω1 und −1
9 in

ω2. Wir (leer-)verkaufen (shorten) das Wertpapier (also

h1 = −1) und legen die daraus erhalten Mittel am Geld-

markt an (also h0 = 5); das bedeutet h = (5,−1)T .

Im vorhergehenden Beispiel war die Geldmarktrendite nur
1
9. Im Zustand ω1 ist die Wertpapierrendite 3

9 gröÿer als

diese Geldmarktrendite und in Zustand ω2 ist die Wertpa-

pierrendite −1
9 kleiner.

1.2.6 Bemerkung: Für K = N + 1 = 2 ist es sehr ein-

fach, Arbitragemöglichkeiten � wenn es welche gibt � zu

�nden. Wenn die Rendite der riskanten Anlageform in bei-

den Zuständen mindestens so hoch wie die der Anlage am

Geldmarkt und in einem Zustand höher ist, dann kauft

man das riskante Wertpapier auf Kredit. Ist andererseits

die Geldmarktrendite in beiden Zuständen mindestens so

hoch wie die Rendite des riskanten Wertpapiers, dann ver-

kaufen wir das riskante Wertpapier (leer) und legen den

Leerverkaufserlös am Geldmarkt an.

1.2.7 Bemerkung: h ist genau dann eineArbitragemög-

lichkeit, wenn V h
0 = 0,Vh

1 ≥ 0 und EP(Vh
1 ) > 0.

1.2.8 Bemerkung: Für h = 0 gilt V h
0 = 0 und V h

1 = 0.

Deshalb reicht V h
1 ≥ 0 als Charakterisierung für eine Arbi-

trage nicht aus. Andererseits setzen wir bei einer Arbitrage



auch nicht voraus, dass V h
1 (ω) > 0 für alle ω gilt, obwohl

auch das ein Ansatz sein kann (vgl. in Pliska [37, Kapitel

1] das Konzept der dominanten Strategie).

1.2.9 Bemerkung: i.) Gelegentlich �ndet man die Aus-

sage, dass eine Arbitrage ein risikoloser Gewinn sei. Das

ist aber mindestens missverständlich. Wenn ein Anleger die

Position h = (1, 0, ..., 0)T wählt und der Zins r > 0 positiv

ist, dann ist der Gewinn für h gleich V h
1 −V h

0 = 1+r−1 =
r > 0 risikolos und strikt positiv; aber h ist keine Arbitra-

ge!

ii.) Es gibt genau dann eine Arbitrage, wenn es einen kos-

tenlosen nicht-negativen (in diesem Sinn risikolosen) von

Null verschiedenen Gewinn gibt, d.h. ein h mit

V h
0 = 0

0 ̸= V h
1 = Gh

1 ≥ 0.

Das ist so, da V h
1 = Gh

1 unter der Vorsetzungen V h
0 = 0

ist.

1.2.10 Bemerkung: Für den diskontiertenGewinnGh,∗ =

V h,∗
1 −V h

0 = 1
RV

h
1 −V h

0 ist die Geldmarktposition h0 irrele-

vant: Wenn h1 und h2 zwei Handelspositionen mit gleichen

Positionen für die riskanten Anlageform h1,i = h2,i, i =

1, ..., N sind, dann stimmen die Gewinne Gh1,∗ = Gh2,∗

überein; unabhängig von den Werten h1,0 bzw. h2,0.



▶ Es gibt einen weiteren Zusammenhang � auÿer dem aus

1.2.9 � zwischen Arbitrage und Gewinn, der durch die fol-

genden beiden Behauptungen erklärt wird. Relevant ist da-

bei der diskontierte Gewinn.

1.2.11 Behauptung: Es gibt genau dann eine Arbitra-

ge, wenn es ein h ∈ RN+1 mit 0 ̸= Gh,∗ ≥ 0 gibt; dabei

ist Gh,∗ = 1
RV

h
1 − V h

0 der diskontierte Gewinn der Han-

delsposition h.

Es gibt also genau dann eine Arbitrage, wenn es einen risi-

kolosen von Null verschiedenen diskontierten Gewinn gibt.

Es sei nochmals darauf hingewiesen, dass die Bezeichnung

diskontierter Gewinn eigentlich irreführend ist. Besser wäre

Gewinn aus den diskontierten Werten. ......

1.2.12 Behauptung: Ist h = (h1, ..., hN)
T ∈ RN eine

Handelsposition für die riskanten Anlageformen mit 0 ̸=
Gh,∗ ≥ 0. Dann ist h′ = (h0, h1, ..., hN), h0 = −h •S0 eine

Arbitrage.



1.2.13 Bemerkung: Wir beobachten

Gh,∗ ≥ 0 ⇔ 1

R
V h
1 ≥ V h

0

⇔ V h
1

V h
0

≥ R

⇔ V h
1

V h
0

− 1 ≥ r

⇔ V h
1 − V h

0

V h
0

≥ r.

Wenn die Renditen V h
1 −V

h
0

V h
0

der Handelsposition (die unab-

hängig von h0 ist) in allen Zuständen mindestens so hoch

wie die Geldmarktrendite und von Null verschieden ist,

dann gibt es eine Arbitrage.

Wir können auch die Überschussrendite

V h
1 − V h

0

V h
0

− r

betrachten. Wenn es eine Position mit einer (unter allen

Umständen) nicht-negativen von Null verschiedenen Über-

schussrendite gibt, dann gibt es eine Arbitarge. Wenn es

also möglich ist unter allen Umständen mindestens so gut

wie der Geldmarkt zu sein und in einem Zustand sogar

besser, dann gibt es eine Arbitrage.3

1.2.14 Satz Es gibt genau dann eine Arbitrage, wenn es

eine h mit V h
0 ̸= 0 Baustelle ......

3An arbitragefreien Finanzmärkten kann man nicht mal den Geldmarkt sicher
schlagen.



r ̸= V h
1 − V h

0

V h
0

≥ r

▶ Bei Arbitragefreiheit kann es also keine Position geben,

deren Rendite immer mindestens so hoch ist wie die Geld-

marktrendite und in mindestens einem Zustand echt höher.

1.2.15 Bemerkung Geometrische Interpretation von 0 ̸=
Gh,∗ ≥ 0; Ein diskontierter Arbitrage-Gewinn liegt also im Baustelle, wahr-

scheinlich an

anderen Ort ......
ersten Quadranten (ohne den Nullpunkt). Diese Beobach-

tung wird sich noch als nützlich erweisen

1.2.16 Bemerkung:Wenn hmit V h
0 = 0 eine sogenannte

Selbstmord-Handelspositionmit 0 ̸= Vh
1 ≤ 0 ist, dann

ist −h eine Arbitrage. Ist h eine Arbitrage, dann ist −h
eine Selbstmord-Strategie.

1.2.17 Bemerkung: Bei Arbitragefreiheit gilt: Wenn h ∈
RN+1 eine Handelsposition mit V h

0 = 0 und V h
1 ̸= 0 ist,

dann kann Vh
1 ≥ 0 nicht gelten. In Beweisen werden wir

das so machen: Wir zeigen (durch Fallunterscheidung)

für h ∈ RN+1 mit V h
0 = 0 und V h

1 ̸= 0 gibt es stets ein j

mit V h
1 (ωj) < 0.

Bei Arbitragefreiheit gilt sogar : Wenn h ∈ RN+1 eine Han-

delsposition mit V h
0 = 0 und V h

1 ̸= 0 ist, dann gibt es i, j

mit V h
1 (ωi) > 0, V h

1 (ωj) < 0. Würde V h
1 (ωi) ≤ 0 für alle

i ̸= j und V h
1 (ωj) < 0 gelten, dann wäre h ∈ RN+1 eine



Selbstmordstrategie. Dann ist −h eine Arbitragemöglich-

keit.

1.2.18 Beispiel: Es sei wieder r = 1
9, S0 = 5, S1(ω1) =

60
9 , S1(ω2) =

40
9 . p1 =

3
4, p2 =

1
4. Dann gilt Arbitragefreiheit.

Wenn h = (h0, h1)
T eine Handelsposition mit V h

0 = 0 ist,

dann ist h0+5h1 = 0. Also h0 = −5h1. Für die Auszahlung
gilt

V h
1 =

(
10
9

−10
9

)
h1

V h
1 ̸= 0 impliziert h1 ̸= 0. Also gibt es zwei Fälle.

i.) Wenn h1 > 0 gilt, dann ist V h
1 (ω2) < 0. Also keine

Arbitragemöglichkeit.

ii.) Wenn h1 < 0 gilt, dann ist V h
1 (ω1) < 0. Also keine

Arbitragemöglichkeit.

Es kann also in diesem EPFMM keine Arbitragemöglich-

keiten geben.

Wie in der vorherigen Bemerkung angegeben, gibt es im

Fall h1 > 0 einerseits einen Zustand mit einer negativen

Auszahlung; nämlich j = 2. Es gibt aber auch einen Zu-

stand mit einer positiven Auszahlung; nämlich j = 1.

1.2.19 Bemerkung: Arbitragemöglichkeiten sind belie-

big skalierbar: Wenn h eine Arbitragemöglichkeit ist, dann



ist für alle α > 0 auch αh eine Arbitragemöglichkeit.

1.2.20 Satz:Wenn es eine Handelsposition h ∈ RN+1 mit

V h
0 < 0, V h

1 ≥ 0 gibt, dann gibt es eine Arbitragemöglich-

keit.

1.2.21 Bemerkung: Handelspositionen wie im vorherge-

henden Satz werden in anderen Quellen ebenfalls Arbitra-

gemöglichkeit genannt (so beispielsweise in Du�e [9, Seite

3]). Solche Handelsposition sind noch besser als die Arbi-

tragemöglichkeiten gemäÿ unserer De�nition: Man hat den

�nanziellen Vorteil schon in t = 0. Man könnte diesen Vor-

teil auf dem Geldmarkt anlegen und hätte dann in jeden

Zustand eine positive Auszahlung; also eine starke Arbi-

trage.

▶ Wir haben bis hierhin viele Aspekte von Arbitrage ge-

sammelt. ...... Redundanzen und etwaige Nichtverwendung

im folgenden nehmen wir in Kauf. ......

1.2.22 De�nition:Das EPFMM heiÿt arbitragefrei, wenn

es keine Arbitrage gibt.

1.2.23 Bemerkung:Wir werden im folgenden Arbitrage-

freiheit als eine plausible und vernünftige Eigenschaft eines



EPFMM au�assen.4

Wenn es eine Arbitrage gäbe, dann könnte ein Anleger sei-

nen Nutzen � diesen Begri� werden wir formal erst später

einführen � grenzenlos steigern. Übliche Optimierungspro-

bleme der Portfoliotheorie hätten keine Lösung (vgl. Du�e

[9, S. 5f]).

Wenn es eine Arbitrage gäbe, dann wäre zudem die An-

nahme exogener Preise fragwürdig. Anleger hätten schlieÿ-

lich Interesse an SEHR groÿen Arbitragepositionen. Es ist

dann plausibel, dass sich Preise so anpassen, dass die Ar-

bitragemöglichkeit verschwindet.

1.2.24 Satz (Law of one price, LOOP): Wenn das

EPFMM arbitragefrei ist, dann gilt das Law of one pri-

ce (LOOP):

Vh1
1 = Vh2

1 ⇒ V h1
0 = V h2

0 .

In Worten: Wenn zwei Positionen identische Auszahlungs-

pro�le haben, dann müssen sie bei Arbitragefreiheit auch

den gleichen Preis haben.

4Sollte Ihnen eine Arbitrage bekannt sein, so wäre es sehr wünschenswert, wenn
Sie mir diese Position vertraulich mitteilen würden. Email an mj ät math-
stat.de



1.3 Risikoneutralwahrscheinlichkeiten

▶ Es ist einfach eine sichere Auszahlung X (die man in

t = 1 erhält) zu bewerten (den fairen Wert in t = 0 zu

ermitteln). Der faire Preis muss pX = X
1+r sein. Wenn

die Auszahlung riskant ist, dann könnten man versucht

sein, die Formel pX = E(X)
1+r zur Bewertung zu verwenden.

Die Formel funktioniert sogar, aber mit einen Twist. Der

Twist besteht darin, dass man nicht die Wahrscheinlichkei-

ten p1, p2, ..., pK nimmt, sondern solche Wahrscheinlichkei-

ten q1, q2, ..., qK , so dass die Gleichung stimmt. Das klingt

nach Pippi Langstrumpf (ich mach mir die Welt; widewide

wie sie mir gefällt) oder Freiherr von Münchhausen (am ei-

genen Schopf aus dem Sumpf ziehen). In der Tat ist die

Er�ndung der Risikoneutralwahrscheinlichkeiten ein Ge-

niestreich, der eine neue Welt erscha�t: die Q-Welt bzw.

die Risikoneutral-Welt. In dieser Welt kann man, wie wir

sehen werden, groÿartige Dinge machen. Die folgenden De-

�nition ist von herausragender Bedeutung.

▶ Bewertung (das erste mal) ...

1.3.1 De�nition: EinWahrscheinlichkeitsmaÿQ heiÿtRi-

sikoneutralwahrscheinlichkeitsmaÿ oder Martingal-

wahrscheinlichkeitsmaÿ, falls

i.) qk := Q({ωk}) > 0 für k = 1, ..., K.



ii.) Für alle i = 1, ..., N gilt

Si0 = EQ
(
Si1
R

)
=

K∑
k=1

qk
Si1(ωk)

R

= EQ (Si∗1 ) = K∑
k=1

qkS
i∗
1 (ωk).

Die N Gleichungen kann man mit Matrizen in einer Glei-

chung zusammenfassen:

S0 = (S∗1)
Tq.

Dabei ist qi = q(ωi) = Q({ωi}) und

S∗1 =


S11(ω1)

R ...
SN−11 (ω1)

R

SN1 (ω1)

R
S11(ω2)

R ...
SN−11 (ω2)

R

SN1 (ω2)

R

: : : :
S11(ωK)

R ...
SN−11 (ωK)

R

SN1 (ωK)

R

 ∈M(K,N,R)

ist die Matrix der diskontierten Wertpapierauszah-

lungen (also ohne eine Spalte für den Geldmarkt).

Wir nennen die Wahrscheinlichkeiten qk der Ergebnisse ωk

Risikoneutralwahrscheinlichkeiten.

Die Menge aller Risikoneutralwahrscheinlichkeits-

maÿe bezeichnen wir mit M.

▶ Natürlich ergibt sich die Frage, ob (unter welchen Bedin-

gungen) es solche magischen Wahrscheinlichkeiten wirklich

gibt. Wir werden sehen, dass des solche WAhrscheinlichkei-



ten genau dann gibt, es keine Arbitragemöglichkeiten gibt.

Es fügt sich also alles ganz wunderbar.

1.3.2 Satz: Ein Vektor q ∈ RK mit qi > 0 für alle

i = 1, ...., K de�niert genau dann eine Risikoneutralwahr-

scheinlichkeitsmaÿ Q mit Q({ωi}) = qi, wenn

S̄0 = (A∗)Tq

gilt. Dabei ist

A∗ =


1

S11(ω1)

R ...
SN−11 (ω1)

R

SN1 (ω1)

R

1
S11(ω2)

R ...
SN−11 (ω2)

R

SN1 (ω2)

R

: : : : :

1
S11(ωK)

R ...
SN−11 (ωK)

R

SN1 (ωK)

R

 ∈M(K,N + 1,R)

die Matrix der diskontierten Auszahlungen aller Anlagefor-

men und

S̄0 =


1

S1
0

:

SN0

 .

der Vektor der Wertpapierpreise (einschlieÿlich Geldmarkt).

Wir erhalten im Gleichungssystem S̄0 = (A∗)Tq eine Glei-

chung je Anlageform: N für die N Basiswertpapiere und

eine für den Geldmarkt; also insgesamt N+1 Gleichungen.

Dabei entspricht die Gleichung für den Geldmarkt gerade



der Gleichung, dass sich die Wahrscheinlichkeiten zu Eins

addieren. Eine Lösung des Gleichungssystem S̄0 = (A∗)Tq

ist aber nicht automatisch eine risikoneutrale Zähldichte.

Die Lösung muss zudem qi > 0, i = 1, ..., K erfüllen!

1.3.3 Beispiel: i.) Es sei wieder r = 1
9, S0 = 5, S1(ω1) =

60
9 , S1(ω2) =

40
9 . p1 =

3
4, p2 =

1
4. Gibt es Risikoneutralwahr-

scheinlichkeiten?

Wir betrachten das lineare Gleichungssystem S̄0 = (A∗)Tq,

d.h. (
1 1

6 4

)(
q1

q2

)
=

(
1

5

)
.

Dieses lineare Gleichungssystem hat die eindeutige Lösung

q1 = 1
2, q2 = 1

2. Wir haben also Risikoneutralwahrschein-

lichkeiten gefunden!

Modelle mit K = 2 und N = 1 kann man natürlich mit

Bleistift und Papier lösen. Wenn man aber mit die Para-

meter variieren möchte, dann bietet sich computergestütz-

te Lösung an. Auf www.mathstat.de/fima werden R und

Python Skrite angeboten. ......

ii.) Es sei jetzt r = 1
3, S0 = 5, S1(ω1) =

60
9 , S1(ω2) =

40
9 .

p1 =
3
4, p2 =

1
4.

Wir betrachten wieder S̄0 = (A∗)Tq; diesmal erhalten wir

www.mathstat.de/fima


das Lineare Gleichungssystem(
1 1

5 10
3

)(
q1

q2

)
=

(
1

5

)
.

Dieses lineare Gleichungssystem hat die eindeutige Lösung

q1 = 1, q2 = 0. Diese Werte bilden jedoch keine Risikoneu-

tralwahrscheinlichkeiten, denn q2 = 0. Es kann keine Risi-

koneutralwahrscheinlichkeiten geben, denn die müssten das

obige lineare Gleichungssystem lösen. Dieses lineare Glei-

chungssystem hat aber nur die eine Lösung q1 = 1, q2 = 0

und die de�nieren keine Risikoneutralwahrscheinlichkeiten.

Für die Spezi�kation i.) gab es keine Arbitragemöglich-

keit aber es gab Risikoneutralwahrscheinlichkeiten. Für die

Spezi�kation ii.) gab es Arbitragemöglichkeiten aber es gab

keine Risikoneutralwahrscheinlichkeiten. Wir werden gleich

sehen, dass das kein Zufalls ist.

1.3.4 Bemerkung: Wenn Q ∈M ein Risikoneutralwahr-

scheinlichkeitsmaÿ ist, dann gilt für alle Basiswertpapiere

Si0 = EQ
(
Si1
R

)
.

Wir erhalten also den aktuellen Wert als Erwartungswert

des diskontierten zukünftigen Wertes. Es ist sehr wich-

tig, dass diese Identität mit P (anstatt mit Q) im Allge-

meinen nicht gilt. Im Allgemeinen ist Si0 ̸= EP (Si1/R).
Wären Anleger risikoneutral (auf die formale De�nition



von risikoneutral müssen wir noch warten), dann würde

Si0 = EP (Si1/R) gelten. Dementsprechend ist die Formu-

lierung populär, dass in der Q-Welt Risikoneutralität gilt.

Es gibt aber nur eine Welt; die P-Welt. Die Q-Welt ist eine

genial ausgedachte Welt der Finanzmathematik.

Das bedeutet also nicht, dass man für die Anwendbarkeit

der Formeln/Theorie unterstellen würde, dass Anleger tat-

sächlich risikoneutral sind. Wenn man mit gewechselten

Wahrscheinlichkeiten rechnet, dann kann man so rechnen,

als ob Anleger risikoneutral wären.Die transformierten

Wahrscheinlichkeiten erfassen dabei die Risikoaver-

sion. Im Fall K = 2 kann man folgendes Beobachten. Der

Anleger nutzt/rechnet mit pessimistischeren Wahrschein-

lichkeiten: Die Wahrscheinlichkeit des ungünstigen Ereig-

nisses wird hoch gesetzt; das beobachten wir jetzt in einem

Beispiel.

1.3.5 Bemerkung: Um die Rolle der Risikoneutralwahr-

scheinlichkeiten zu verstehen, betrachten wir eine Lotterie

mit X1(ω1) = 50, X1(ω2) = 100 und P({ω1}) = p =
1
2,P({ω2}) = 1 − p = 1

2. Wenn man an dieser Lotte-

rie teilnehmen will, dann muss man einen Preis V zah-

len. Wie kann man den (höchsten für Kunden akzepta-

blen) Preis der Lotterie charakterisieren? Eine denkbare

Antwort ist EP(X1) = 75. Dies ist schlieÿlich die erwarte-

te Auszahlung (der durchschnittliche Gewinn bei∞-vielen

unabhängigen Wiederholungen). Diese Antwort ist jedoch



unbefriedigend. Angenommen wir betrachten eine zweite

Lotterie: X2(ω1) = 70, X2(ω2) = 80. Dann ist (ebenfalls)

EP(X2) = 75. Die beiden Lotterien hätten also � wenn man

sich am Erwartungswert orientiert � den gleichen Preis.

Diese zweite Lotterie hat aber ein geringeres Risiko: Bei

der zweiten Lotterie verliert man allenfalls 5 und bei der

ersten 25. Angenommen wir betrachten eine dritte Lot-

terie: X3(ω1) = 75, X3(ω2) = 75. Dann ist (ebenfalls)

EP(X3) = 75. Alle drei Lotterien hätten � wenn man sich

am Erwartungswert orientiert � den gleichen Preis. Es ist

aber unbefriedigend, dass die unterschiedlichen Lotterien,

den gleichen Preis haben sollen, obwohl sie unterschied-

lich riskant sind. Es ist vielmehr plausibel, dass von den

zwei Lotterien mit gleichem Erwartungswert diejenige mit

einem höheren Risiko5 einen geringeren Preis hat (unpopu-

lärer ist).

Angenommen wir würden beobachten (auf einem gut funk-

tionierenden Markt für Lotterien), dass die Lotterie X1 für

V = 70 gehandelt wird. Diesen Preis kann man als Er-

wartungswert charakterisieren. Man muss dazu aber die

Wahrscheinlichkeiten wechseln. Wir beobachten

70 = q · 50 + (1− q) · 100

⇔ q =
3

5
.

Wenn die Wahrscheinlichkeit des ungünstigen Ereignisses

5Wir gehen hier mit dem Begri� Risiko naiv um. Später werden wir sehen, dass
nicht jedes Risiko preis-relevant ist. ....



ω1 auf den höheren Wert 3
5 (anstatt 1

2) gesetzt wird, dann

wird die Aversion gegen Risiko erfasst und der Preis V

der Lotterie X1 lässt sich (trotzdem) als Erwartungswert

schreiben:

EQ(X1) = q ·X1(ω1) + (1− q) ·X1(ω2)

=
3

5
50 +

2

5
100 = 70 = V.

Also: Nach demWechsel der Wahrscheinlichkeiten (von

P zu Q) liefert der mit Q berechnete Erwartungswert

den beobachteten Preis.

Wir können so rechnen, als ob Risikoneutralität gelten

würde, obwohl sie tatsächlich nicht gilt. Die Wahrschein-

lichkeit des ungünstigen Ereignisses wird dabei hoch ge-

setzt. Dadurch wird die Risikoaversion erfasst.

Und bei anderen Lotterien? Ist der Marktpreis für die zwei-

te Lotterie

EQ(X2) =
3

5
70 +

2

5
80 = 74?

Das wäre sehr bequem, denn dann könnte man alle Bewer-

tungsaufgaben mit demWechsel zu einemWahrscheinlich-

keitsmaÿ linear lösen (der Erwartungswert ist ein linearer

Operator).

Es wird sich in der Tat zeigen, dass man für die Wert-

papierbewertung nur ein für alle Bewertungsaufgaben das

gleiche Wahrscheinlichkeitsmaÿ verwenden kann; und



nicht etwa für jedes Wertpapier eine spezi�sche Anpassung

der Wahrscheinlichkeiten.

▶ Wir werden jetzt viele Facetten der Risikoneutralwahr-

scheinlichkeiten ermitteln. Nur mache der Facetten werden

wir direkt verwenden. Sie werden also für etwaige später

(oder viel spätere Anwendung genannt).

1.3.6 Bemerkung: i.) Die Gleichung Si∗0 = EQ (Si∗1 ) be-
deutet, dass diskontierte Wertpapierpreise in der Q-Welt

im Durchschnitt über die Zustände unverändert blei-

ben.

ii.) Es gilt (nur geringfügig anders formuliert als in i.))

EQ(∆Si∗1 ) = 0. Die Aussage EQ(∆Si∗1 ) = 0 bedeutet, dass

die erwarteten Zuwächse EQ(∆Si∗1 ) der diskontierten Wert-

papierpreise unter Q Null sind. Die diskontierten Wertpa-

pierpreise bleiben in der Q-Welt durchschnittlich unverän-

dert.

1.3.7 Bemerkung: Wir notieren � ebenfalls für den spä-

teren Gebrauch � die geometrische Form der obigen Aus-



sage:

Si0 =

K∑
k=1

qkS
i,∗
1 (ωk)

⇔
K∑
k=1

qkS
i,∗
1 (ωk)− Si0

K∑
k=1

qk = 0

⇔
K∑
k=1

qk(S
i,∗
1 (ωk)− Si0) = 0

⇔ q ⊥ (Si,∗1 (ω1)− Si0, ..., S
i,∗
1 (ωK)− Si0)T

⇔ q ⊥ (∆Si,∗1 ).

Also: Der Vektor der Zuwächse ∆Si,∗1 der diskontierten

Wertpapierpreise stehen orthogonal (bezüglich des Stan-

dardskalarprodukts) auf den Risikoneutralwahrscheinlich-

keiten q.

1.3.8 De�ntion (Wiederholung): Es sei h ∈ RN+1 ei-

ne Handelsposition. Wir de�nieren die diskontierte Aus-

zahlung der Handelsposition h:

(V h
1 )
∗(ωk) :=

V h
1 (ωk)

R
.

Ausgeschrieben gilt:

(V h
1 )
∗(ωk) =

V h
1 (ωk)

R
=
Rh0 + S1

1(ωk)h1 + ...SN1 (ωk)hN
R

= h0 +
S1
1(ωk)

R
h1 + ... +

SN1 (ωk)

R
hN .



1.3.9 Bemerkung: Es sei

A∗ =


1

S11(ω1)

R ...
SN−11 (ω1)

R

SN1 (ω1)

R

1
S11(ω2)

R ...
SN−11 (ω2)

R

SN1 (ω2)

R

: : : : :

1
S11(ωK)

R ...
SN−11 (ωK)

R

SN1 (ωK)

R

 ∈M(K,N + 1,R)

die Matrix der diskontierten Auszahlungen aller Anlagefor-

men; also einschlieÿlich des Geldmarktes.

Die obige Gleichung (V h
1 )
∗(ωk) = h0 +

S11(ωk)

R h1 + ... +
SN1 (ωk)

R hN für die Zufallsvariablen kann man mit Matrizen

auch so angeben

(Vh
1 )
∗ =


1

S11(ω1)

R ...
SN−11 (ω1)

R

SN1 (ω1)

R

1
S11(ω2)

R ...
SN−11 (ω2)

R

SN1 (ω2)

R

: : : : :

1
S11(ωK)

R ...
SN−11 (ωK)

R

SN1 (ωK)

R




h0

h1
...

hN

 = A∗h.

1.3.10 Satz: q de�niert genau dann eine Risikoneutral-

wahrscheinlichkeit Q, wenn q≫ 0 und für alle Handelspo-

sitionen h ∈ RN+1 gilt:

V h
0 =

K∑
k=1

q(ωk)
V h
1 (ωk)

R
=

K∑
k=1

q(ωk)(V
h
1 )
∗(ωk)

= qT (Vh
1 )
∗ = q • (Vh

1 )
∗

= EQ ((V h
1 )
∗) = EQ

(
V h
1

R

)
.

Die Gleichung (V h
0 )
∗ = V h

0 = EQ
(
V h
1
R

)
= EQ ((V h

1 )
∗) be-



deutet, dass sich das Prinzip der Risikoneutralbewer-

tung von den Basiswertpapieren auf die Auszah-

lung beliebiger Handelspositionen fortsetzen lässt.

Diese Fortsetzungseigenschaft ist sehr nützlich und von

grundsätzlicher Bedeutung!

Wir haben oben in 5 Gleichungen 5 Varianten der gleichen

Aussage angegeben. Es ist je nach Zusammenhang eine der

Varianten bequemer, deshalb ist die Redundanz sinnvoll.

1.3.11 Bemerkung: i.) Wir haben früher festgestellt, dass

für die Risikoneutralwahrscheinlichkeiten q und die Zu-

wächse ∆Si,∗1

q ⊥ ∆Si,∗1

gilt. Wir erhalten auch hier eine Fortsetzungseigenschaft

von den Basisprodukten auf alle erreichbaren Auszahlungs-

pro�le. Es gilt also analog für alle Handelspositionen h und

deren Gewinn der diskontierten Werte Gh,∗ = ∆(Vh
1 )
∗ Also ist iii.) redun-

dant?

q ⊥ (∆(Vh
1 )
∗)

q ⊥ Gh,∗

wobei ∆(Vh
1 )
∗ = (Vh

1 )
∗ − V h

0 . Hier kann man den

Geldmarkt weglas-

sen? h ∈ RN ?ii.) Für alle kostenlosen h mit V h
0 = 0 gilt

q ⊥ (Vh
1 )
∗.



Also ist der Vektor der Risikoneutralwahrscheinlichkeiten

orthogonal zu den diskontierten kostenlosen Auszahlungen.

iii.) Es sei h eine Handelsposition mit diskontiertem Ge-

winn Gh,∗. Wir betrachten die Handelsposition

h′ =


h0 − V h

0

h1
...

hN

 .

Dann hat h′ den gleichen Gewinn wie h und die Anschaf-

fungskosten sind Null.

Mit ii.) folgt, dass die Risikoneutralwahrscheinlichkeiten q

orthogonal zu allen diskontierten Gewinnen ist. Aber das

wussten wir schon. ......

iv.) Baustelle ...... Wir betrachten die K ×N Matrix

∆S∗ =


S11(ω1)

R − S1
0 ...

SN1 (ω1)

R − SN1
S11(ω2)

R − S1
0 ...

SN1 (ω2)

R − SN1
: : :

S11(ωK)

R − S1
0 ...

SN1 (ωK)

R − SN1


q ist genau dann eine RNW, wenn

∑
qi = 1, qi > 0 und q

ist orthogonal auf den Spalten von ∆S∗. q ist genau dann

orthogonal auf den Spalten von ∆S∗, wenn q im Kern von



(∆S∗)T ist, d.h.

(∆S∗)Tq = 0.

Die erreichbaren Gewinne sind genau die Vektoren

(∆S∗)h,

d.h. der Spaltenraum von (∆S∗). Gemäÿ des Hauptsatzes

der Linearen Algebra

Col(∆S∗)⊕ Kern(∆S∗)T .

Wir �nden also alle RNW in Kern(∆S∗)T . Es ist o.B.d.A.

dim Col(∆S∗) = N . Dann ist dim Kern(∆S∗)T = K −N .

Gibt es immer K −N linear unabhängige RNWen?

1.3.12 Satz: Es sei Q eine Risikoneutralwahrscheinlich-

keitsmaÿ und h eine Handelsposition mit V h
0 > 0. Dann

gilt

EQ
[
Vh

1 − V h
0

V h
0

]
= R.

Alle Anlageformen und sogar alle erreichbaren Pro�le ha-

ben in der Q-Welt die gleiche erwartete Rendite; näm-

lich die Rendite der risikolosen Anlageform. In der echten

Welt (also in der P-Welt) mit risikoaversen Anlegern kann

das natürlich nicht gelten. Risikoaverse Anleger wollen für

die Übernahme von Risiken mit einer höheren erwarteten



Rendite entschädigt werden. Wir werden uns später aus-

führlich mit der Risikoprämie beschäftigen. wo? ....

1.4 Der erste Hauptsatz der

Assetbewertung

Für die Formulierung und den Beweis des 1. Hauptsatzes

sind die folgenden Vorbereitungen nützlich. Die folgenden

Argumente orientieren sind an Pliska [37, Seite 13 �] und

Williams [51, Seite 34 �].

1.4.1 Satz: Es gilt

q ∈M⇔q≫ 0,

K∑
i=1

qi = 1,q ⊥ V∗

⇔q ∈ V∗⊥ ∩ P+,

wobei6

V∗ = {X ∈ RK : X = (V h
1 )
∗, V h

0 = 0,h ∈ RN+1},

P+ = {p |
K∑
k=1

pi = 1,p≫ 0}.

Man könnte auch die Menge W = {Z|Z = Vh
1/R −Vh

0 =

Gh,∗
1 ,h ∈ RN+1} betrachten; und sogar mit h ∈ RN . ......?

Beweis: Es sei h eine Handelsposition und q ∈ V∗⊥ ∩P+

6x≫ 0 bedeutet xi > 0 für alle i.



der Vektor der Q de�niert. Wir zeigen EQ ((V h
1 )
∗) = V h

0 .

Wir de�nieren h̃ = (h0−V h
0 , h1, ..., hn)

T . Dann folgt V h̃
0 =

0 und (V h̃
1 )
∗ ∈ V∗. Aus q ∈ V∗⊥ folgt EQ((V h̃

1 )
∗) = 0.

Ferner gilt

(V h̃
1 )
∗ = A∗h̃ = A∗h− V h

0 = (V h
1 )
∗ − V h

0 .

Dann folgt schlieÿlich EQ ((V h
1 )
∗) = V h

0

1.4.2 Bemerkung: i.) Wir bemerken, dass V∗ ein linearer
Unterraum von RK ist. V∗ ist der Unterraum der kosten-

los erreichbaren diskontierten Auszahlungen.

ii.) Es sei

A = {X ∈ RK : X ≥ 0 und X ̸= 0}.

A ist die Menge aller (auch möglicherweise nicht erreich-

baren) denkbaren Auszahlungen, die � wenn sie kostenlos

erreichbar sind � zu Arbitragemöglichkeiten gehören.

Arbitragefreiheit bedeutet demnach V∗ ∩ A = ∅.

iii.) Es sei

V = {X ∈ RK : X = (V h
1 ), V

h
0 = 0,h ∈ RN+1}.

Es gilt: V ̸= ∅ genau dann, wenn V∗ ̸= ∅. Die Menge V
ist einerseits natürlicher als V∗, trotzdem verwenden wir

V∗. Es gilt: q de�niert genau dann ein Risikoneutralwahr-

scheinlichkeitsmaÿ, wenn q ≫ 0,
∑K

i=1 qi = 1,q ⊥ V∗ gilt



(also ist auch V∗ natürlich) . In dieser Äquivalenz ist V∗

relevant und wir interessieren uns für Risikoneutralwahr-

scheinlichkeiten.

iv.) Es gilt

V∗ = {X ∈ RK : X = (V h
1 )
∗, V h

0 = 0,h ∈ RN+1}

= {X |X = (V h
1 )
∗ − V h

0 = Gh,∗} =: G∗

Arbitragefreiheit bedeutet demnach G∗ ∩ A = ∅.

1.4.3 Satz über die trennende Hyperebene: Es sei U

ein linearer Unterraum des RK und C ⊂ RK eine konve-

xe, abgeschlossene und beschränkte Menge von RK und es

gelte U ∩ C = ∅. Dann gibt es eine Hyperebene H = {x :

x • n = 0} mit U ⊂ H und p • n > 0 für alle p ∈ C.

Wir beachten auch: Wegen U ⊂ H gilt auch für alle u ∈ U
die Orthogonalitätseigenschaft u • n = 0.

p • n > 0 bedeutet geometrisch, dass p auf den gleichen

Seite der Hyperebene liegt wie der Normalvektor n.

Beweis: Vgl. Williams [51, Abschnitt 3.6].

1.4.4 Erster Hauptsatz: Es gilt

V∗ ∩ A = ∅ ⇔M ̸= ∅.

Es gibt genau dann ein Risikoneutralwahrschein-



lichkeitsmaÿ, wenn Arbitragefreiheit gilt.

V1(ω1)

V1(ω2)

C

V∗

n

q

Abbildung 1.4.1: Die Abbildung (vgl. Pliska [37, ......])
illustriert den Beweis des 1 HS. V∗ darf
den 1 Quadranten nicht schneiden. C
ist kompakt, abgeschlossen und disjunkt
zum Unterraum V∗ (denn C liegt im
ersten Quadranten). Dann gibt es eine
Hyperebene durch Null mit normalen
Vektor n und diese Hyperebene umfasst
V∗. Also ist n orthogonal zu V∗. Dann
ist q = n/(n1 + ...nk) ist ein Vektor mit
Risikoneutralwahrscheinlichkeiten. Denn
die Komponenten addieren sich zu Eins
sind alle strickt positiv und orthogonal
auf V∗.

1.4.5 Bemerkung:Wenn es ein Risikoneutralwahrschein-

lichkeitsmaÿ gibt, dann können wir die Risikoneutralbewer-

tungsmethoden verwenden. Das wäre schön. Arbitragefrei-



heit ist eine vernünftige Annahme. Genau dann wenn diese

Voraussetzung erfüllt ist, dann gibt es ein Risikoneutral-

wahrscheinlichkeitsmaÿ. Es fügt sich also sehr schön.

Der erste Hauptsatz heiÿt aus mit gutem GrundHauptsatz.

Genau unter der vernünftigen Voraussetzung der Arbitra-

gefreiheit gibt es ein Wahrscheinlichkeitsmaÿ Q, so dass

V h
0 = EQ

(
V h
1

1 + r

)
.

bzw.

V h∗
0 = EQ (V h∗

1

)

Exkurs: Farkas und Stiemke
Dieser Exkurs ist noch ei-

ne Baustelle ....

Wir haben den ersten Hauptsatz mit dem Trennungssatz

bewiesen. Man kann den Hauptsatz auch mit Farkas Lem-

ma beweisen (vgl. Pliska [37, S. 16]).

1.4.6 Lemma von Farkas: Es sei M eine m× n Matrix

und b ∈ Rn ein.

Dann hat entweder das System

Mx = b,x ≥ 0



oder das System

yTM ≤ 0,bTy > 0

eine Lösung.

▶ Zunächst beachten wir den Zusammenhang zwischen Ar-

bitrage und dem Lemma von Farkas (das ist eine Übungs-

aufgabe aus Pliska [37, Seite 16])

1.4.7 Lemma (Arbitrage und Farkas Lemma): Es sei
M die (2N +K)× (K + 1) Matrix

M =


0 0 ... 0 0 1 1 ... 1

∆S1,∗
1 (ω1) −∆S1,∗

1 (ω1) ... ∆S1,∗
N (ω1) −∆S1,∗

N (ω1) −1 0 ... 0

∆S1,∗
1 (ω2) −∆S1,∗

1 (ω2) ... ∆S1,∗
N (ω2) −∆S1,∗

N (ω2) 0 −1 ... 0

... ... ... ... ... ... ... ... ...

∆S1,∗
1 (ωK) −∆S1,∗

1 (ωK) ... ∆S1,∗
N (ωK) −∆S1,∗

N (ωK) 0 0 ... −1


und

b = (1, 0, 0, ..., 0)T ∈ RK+1

Es gibt genau dann eine Arbitrage, wenn es ein x ≥ 0

mit Mx = b gibt. [Das ist die erste Alternative aus dem

Lemma von Farkas]

1.4.8 Beweis des ersten Hauptsatz mit Farkas Lem-

ma:

▶ Noch direkter (in der Tat einen SEHR direkten Beweis)



erhält man einen Beweis des ersten Hauptsatzes mit dem

Lemma von Stiemke.

1.4.9 Lemma von Stiemke: Es seiM einem×nMatrix

und b ∈ Rn ein.

Dann hat entweder das System

Bx ≥ 0,Bx ̸= 0

oder das System

BTy = 0,yi > 0

eine Lösung.

Beweis: Vgl. Jungnickel [28, Seite 42]

1.4.10 Beweis des Hauptsatzes mit dem Lemma von

Stiemke:

1.5 Bewertung bedingter Auszahlungen

Die Bewertung von Derivaten gehört zu den Basiskompe-

tenzen eines Finanzmathematikers. Wir de�nieren beding-

te Auszahlungen, die uns als Modell für Derivate dienen.

1.5.1 De�niton: Eine bedingte Auszahlung für7 t = 1

7Die Auszahlung erhält der Inhaber im Zeitpunt t = 1.



ist eine Zufallsvariable8 X : Ω→ R, ω 7→ X(ω).

1.5.2 De�niton: Eine bedingte Auszahlung X heiÿt re-

plizierbar oder erreichbar, wenn es eine Handelspositi-

on h mit V h
1 = X gibt. h heiÿt dann die replizierende

Handelsposition für X. V h
0 nennt man die Replikati-

onskosten von X.

1.5.3 Bemerkung: Wir bemerkten, dass die Replikati-

onskosten für X wohlde�niert sind. In der Tat: Wir be-

merken, dass die Replikationskosten unabhängig von der

replizierenden Position sind (wegen LOOP, vgl. Satz 1.2.24):

Wenn h1 und h2 beide das Pro�l X replizieren, dann ha-

ben h1 und h2 die gleichen Anscha�ungskosten, d.h. es gilt

Vh1
0 = Vh2

0 .

1.5.4 Bemerkung: V h
1 = X gilt genau dann, wennAh =

X gilt. Die Frage nach der Replizierbarkeit entspricht also

der Lösbarkeit des linearen Gleichungssystems Ah = X.

In der Terminologie der Linearen Algebra: X ist in dem

Raum, der von den Spalten von A erzeugt wird: X ∈
Col(A).

1.5.5 De�niton:Wir betrachten ein arbitragefreies EPFMM

und fügen eine weitere Anlagemöglichkeit hinzu. pX sei der

8Zufallsvariablensind im Allgemeinen messbar. Die müssen wir hier nicht ange-
ben, da A = P(Ω) ist.



Preis zu dem der Anleger das Finanzprodukt mit der Aus-

zahlung X kaufen kann. Wenn das erweiterte EPFMM

arbitragefrei bleibt, dann heiÿt der Preis pX mit Arbitra-

gefreiheit vereinbar bzw. fair.

Die Auszahlungsmatrix des erweiterten EPFMM be-
zeichnen wir mit

Ã :=


Rf

1 S1
1(ω1) ... SN−1

1 (ω1) SN
1 (ω1) X(ω1)

Rf
1 S1

1(ω2) ... SN−1
1 (ω2) SN

1 (ω2) X(ω2)

: : : : : :

Rf
1 S1

1(ωK) ... SN−1
1 (ωK) SN

1 (ωK) X(ωK)

 ∈M(K,N + 2;R)

und den Vektor der Preise des erweiterten EPFMM mit

¯̄S0 =


1

S0

pX

 .

▶ Die Aufgabe des Finanzmathematikers besteht jetzt dar-

in, den fairen Preis oder die fairen Preise zu ermitteln. Wir

lernen zunächst zwei Bewertungsmethoden kennen: Bewer-

tung durch Replikation und das Risikoneutralbewertungs-

prinzip. Später werden wir drei weitere Methoden kennen

lernen.

1.5.6 Satz (Bewertung durch Replikation):Das EPFMM

sei arbitragefrei undX mit der Handelsposition h replizier-

bar, d.h. V h
1 = Ah. Dann ist

pX = V h
0



der einzige faire Preis für X.

1.5.7 Satz (Risikoneutralbewertungsprinzip):Das EPFMM

sei arbitragefrei und X eine replizierbare bedingte Auszah-

lung. Dann gilt für den fairen Preis von X

pX = EQ
(
X

Rf

)
,

wobei Q (irgend-)ein Risikoneutralwahrscheinlichkeitsmaÿ

ist.

1.5.8 Bemerkung: Wenn für alle ω∗ Derivate mit Aus-

zahlung

Xω∗(ω) =

{
Rf : falls ω = ω∗

0 : sonst.

für pXω∗ gehandelt werden (oder durch Portfolios hω∗ re-

pliziert werden können), dann erhält man eine Technik, um

die Risikoneutralwahrscheinlichkeiten zu ermitteln:

(V
hω∗
0 =) pXω∗ = E

(
Xω∗

Rf

)
=
∑
ω

Q(ω∗)
Xω∗

Rf
= Q(ω∗).

Da sich diese Wahrscheinlichkeiten aus den beobachteten

Preisen (implizit) ergeben, spricht man von impliziten

Risikoneutralwahrscheinlichkeiten. Man kann auch sa-

gen, dass die Preise die Risikoneutralwahrscheinlichkeiten

o�enlegen.

Die impliziten Risikoneutralwahrscheinlichkeiten kann



man auch auf Basis der folgenden bedingten Auszahlungen

ermitteln:9

XBF
ω∗ (ω) =

{
1 : falls ω = ω∗

0 : sonst.

Man ermittelt Handelsposition hBF
ω∗ , die XBF

ω∗ replizieren.

Dann gilt10

RfV
hBF
ω∗

0 = Q(ω∗).

▶ Für den späteren Gebrauch notiernen wir noch die fol-

gende Bemerkung.

1.5.9 Bemerkung: i.) Es sei h eine Handelsposition und

Q1, Q2 Risikoneutralwahrscheinlichkeiten. Dann gilt

EQ1

(
V h
1

Rf

)
= EQ2

(
V h
1

Rf

)
und

EQ1
(
V h
1

)
= EQ2

(
V h
1

)
.

ii.) WennX replizierbar ist und Q1, Q2 Risikoneutralwahr-

scheinlichkeiten.

EQ1

(
X

Rf

)
= EQ2

(
X

Rf

)
9BF steht für Butter�y.
10Vgl. auch Hull [14, Seite 468] für diese Methode (in einem anderen Kontext).

Die Werte V
hBF
ω∗

0 entsprechen den sogenannten Zustandspreisen, die wir ab
1.8.1 behandeln.



und

EQ1 (X) = EQ2 (X) .

1.6 Vollständige Finanzmärkte und

Eindeutigkeit des

Risikoneutralwahrscheinlichkeitsmaÿ

1.6.1 De�niton: Das EPFMM heiÿt vollständig, wenn

es für jede bedingte AuszahlungX ∈ RK eine replizierende

Position h gibt, d.h. es gibt ein h mit Ah = X.

1.6.2 Bemerkung: Wir betrachten die Auszahlungsma-

trix

A =


R S1

1(ω1) ... SN−11 (ω1) SN1 (ω1)

R S1
1(ω2) ... SN−11 (ω2) SN1 (ω2)

: : : : :

R S1
1(ωK) ... SN−11 (ωK) SN1 (ωK)

 ∈ RK×1+N

und eine bedingte Auszahlung X. Es gibt genau dann eine

replizierende Position h ∈ R1+N , wenn das lineare Glei-

chungssystem

Ah = X

eine Lösung h ∈ R1+N hat.

Vollständigkeit bedeutet also, dass das lineare Gleichungs-



system für jede rechte Seite X ∈ RK lösbar ist. Dies ist

genau dann der Fall, wenn die Matrix A den Rang K hat

(wenn die MatrixA K linear unabhängige Spalten hat), so

dass die Spalten von A den ganzen Raum RK aufspannen.

Mit noch anderen Worten: Die Spalten bilden ein Erzeu-

gendensystem des RK (alle denkbaren X ∈ RK).

▶ Wir haben den folgenden Satz bewiesen:

1.6.3 Satz:Das EPFMM ist genau dann vollständig, wenn

Rang A = K ist.

1.6.4 Zweiter Hauptsatz: In einem arbitargefreien EPFMM

gilt Vollständigkeit genau dann, wenn es genau ein Risiko-

neutralwahrscheinlichkeitsmaÿ gibt.

Mit anderen Worten: In einem arbitargefreien EPFMM

ist die Vollständigkeit äquivalent zur Eindeutigkeit des

Risikoneutralwahrscheinlichkeitsmaÿes.

Vorsicht: Die Formulierung Vollständigkeit ist äquivalent

zur Eindeutigkeit ist üblich aber ungenau! In einem voll-

ständigen EPFMM kann es Arbitragemöglichkeiten geben.

Dann gibt es (natürlich) kein Risikoneutralwahrscheinlich-

keitsmaÿ.

1.6.5 Bemerkung: Wenn das EPFMM vollständig ist,

dann hat A ∈ M(K,N + 1;R) den Rang K. O�enbar



hat dann auch A∗ ∈ M(K,N + 1;R) den Rang K. Der

Rang von (A∗)T ∈ M(N + 1, K;R) und von A∗(A∗)T ist

ebenfalls K (vgl. z.B. Garcia und Horn [11, S. 303] oder

Meyer [33, S. 212]). Also ist A∗(A∗)T eine K ×K Matrix

mit Rang K; also ist A∗(A∗)T invertierbar. Wir erhalten

damit eine geschlossene Formel für die Risikoneutralwahr-

scheinlichkeiten q. In der Tat, aus der Bewertungsformel

(A∗)Tq = S̄0 folgt, dass A∗(A∗)Tq = A∗S̄0. Schlieÿlich Campbell?

q =
(
A∗(A∗)T

)−1
A∗ S̄0.

Wir haben einen alternativen (auch kurzen Beweis) für

die Implikation, Arbitragefrei und Vollständigkeit impli-

ziert Eindeutigkeit, gefunden. In der Tat: Wenn q1,q2 Vek-

toren mit Risikoneutralwahrscheinlichkeiten sind, dann gilt

(A∗)Tqi = S̄0, i = 1, 2. Dann sind die beiden qi auch Lö-

sungen der linearen Gleichung A∗(A∗)Tqi = A∗S̄0. Die Kann man die Ein-

deutigkeit auch an

(A∗)Tqi = S̄0, i =

1, 2 ablesen.

K × K Matrix A∗(A∗)T hat den Rang K. Dann ist die

Lösung des linearen Gleichungssystems eindeutig bestimt.

Also q1 = q2.

1.6.6 Bemerkung:Wenn das arbitragefreie EPFMM voll-

ständig ist, dann gibt es für alle bedingten Auszahlungen

nur einen Preis, der mit Arbitragefreiheit vereinbar ist und

diesen Preis kann man mit den Formeln pX = V h
0 oder

pX = EQ(X/B) berechnen. Also: Die Finanzpreise der das Die Preise der

Basiswerpa-

piere erfüllen

untereinander

Arbitragefreiheit.

.....

EPFMM de�nierenden Anlagemöglichkeiten (den Basis-

wertpapieren) legen die Preise beliebiger bedingter Aus-



zahlungen (den Derivaten) eindeutig fest. Ermittelt wer-

den relative Bewertungen; relativ zu den Basiswertpa-

pieren.

1.7 Unvollständige Märkte und

Arbitragegrenzen

Wenn das arbitragefreie EPFMM unvollständig ist, dann

gibt es für nicht replizierbare Auszahlungen viele Prei-

se, die mit Arbitragefreiheit vereinbar sind. Diese Aussage

wird im folgenden substantiviert, wobei wir uns (wieder)

an Pliska [37] und Williams [51] orientieren. Wir werden

sogenannte Arbitragegrenzen ermitteln zwischen denen die

Preise liegen, die mit Arbitragefreiheit vereinbar sind.

1.7.1 De�nition: Es seiX eine bedingte Auszahlung und

es gelte Arbitragefreiheit. Es sei Q ein Risikoneutralwahr-

scheinlichkeitsmaÿ. Wir de�nieren die folgenden Operato-

ren11 auf der Menge der bedingten Auszahlungen Wir suchen die preiswer-

teste Superreplikation. .....

V +(X) = inf{EQ[Y/R] |Y ≥ X,Y replizierbar },

V −(X) = sup{EQ[Y/R] |Y ≤ X,Y replizierbar },

Beachte, dass die Wahl von Q ∈ M für die Werte V +(X)

und V −(X) irrelevant ist: da Y replizierbar ist, nimmt

EQ[Y/R] für alle Q ∈M den gleichen Wert an.

11Wir sprechen bei V ∗ und V − von Operatoren, da sie auf Abbildungen (nämlich
auf die Zufallsvariablen X) angewendet werden.



Ein erreichbares Auszahlungspro�l Y mit Y ≥ X heiÿt

Superreplikation von X. Da Y immer (in allen Zustän-

den) mindestens so gut wie X ist, sind plausible Preise von

X kleiner oder gleich dem fairen Preis EQ[Y/R] von Y.

Das gilt für alle Superreplikationen von X. Wir erhalten

deshalb mit V +(X) die kleinste obere Schranke (da wir

das In�mum bilden).

Ein erreichbares Auszahlungspro�l Y mit Y ≤ X heiÿt

Subreplikation vonX. Wir erhalten mit V −(X) die gröÿ-

te untere Schranke (da wir das Supremum bilden).

V +(X) und V −(X) heiÿen auch obere bzw. untere Arbi-

tragegrenze. Wir suchen also möglichst preiswerte Super-

replikationen und möglichst wertvolle Subreplikationen. ......

1.7.2 Satz: Es sei X eine bedingte Auszahlung und es

gelte Arbitragefreiheit. Es gibt replizierbare Y+,Y− mit

V +(X) = EQ[Y+/R1] bzw. V −(X) = EQ[Y−/R1]. Für

nicht replizierbare X gilt dabei: X ̸= Y+ ≥ X und X ̸=
Y− ≤ X.

Man kann also eine replizierbare Superreplikation �nden,

deren fairer Wert genau der oberen Arbitragegrenze ent-

spricht. Die Optimierungsproble-

me hat also Lösungen. ......

1.7.3 Bemerkung: Obwohl also V +(X) = EQ[Y+/R]

gilt, kann für nicht-replizierbare X die Gleichung Y+ = X



nicht gelten; sonst wäre X replizierbar (mit h∗). Also muss

Y+(ω) > X(ω) für mindestens ein ω ∈ Ω gelten.

1.7.4 Satz: In einem arbitargefreien EPFMM gilt, dassX

genau dann nicht replizierbar ist, wenn V +(X) > V −(X)

ist.

1.7.5 Satz: Gegeben sei ein arbitragefreies EPFMM so-

wie sowie eine nicht-replizierbare bedingte Auszahlung

X. Es gibt genau dann eine Arbitrage, wenn die beding-

te Auszahlung X (in t = 0) zu einem Preis p ≥ V +(X)

oder zu einem Preis p ≤ V −(X) gehandelt wird. Nur für

p ∈ (V −(X), V +(X)) bleibt die Arbitragefreiheit erhalten.

Ruth Williams, Seite 48:

In fact, ...... are also not

arbitrage free initial prices

in this case.

1.7.6 Satz: Es seiX eine bedingte Auszahlung undQ1, ...,QJ ∈
M = W⊥ ∩ P+ eine maximal linear unabhängige Teil-

menge von W⊥ ∩ P+ (und so eine Basis von W⊥), wobei

W = {Z|Z = Vh
1/R−Vh

0 = Gh,∗
1 ,h ∈ RN+1}. Dann gilt: Warum kann man

eine solche Basis

�nden; Baustelle.

Vgl. Williams Seite

49 oder Pliska Sei-

te 25.

(1) Die Menge der Y ∈ RK mit

Y ≥ X

U− Y

R
= 0

λ−UTQ1 = 0

...

λ−UTQJ = 0

λ ∈ R,Y ∈ RK,U ∈ RK



entspricht der Menge der erreichbaren AuszahlungenY mit

Y ≥ X.

(2) Wenn Y das obige System erfüllt, dann ist λ ein fairer

Preis von Y.

▶ Baustelle: Wenn U ein Unterraum mit Dimension d ist

und O eine Menge, so dass U ∩ O◦ ̸= ∅ gilt, dann gibt

es d linear unabhängige Vektoren v1, ..., vd in U ∩ O◦. Es
sei u1 ∈ U ∩ O◦. Wir ergänzen u1 mit u2, ..., ud zu einer

Basis von U . Dann ist auch v1 = u1, v2 = u1 + εu2, v3 =

u1+εu2+εu3, ... eine Basis von U . Für hinreichend kleines

ε gilt auch für i = 1, ..., d vi ∈ U ∩O◦ ().

1.7.7 Satz: Es seiX eine bedingte Auszahlung undQ1, ...,QJ ∈
M = W⊥ ∩ P+ eine Basis von W⊥, wobei W = {Z|Z =

Vh
1/R−Vh

0 = Gh,∗
1 ,h ∈ RN+1}.

Es sei λ+ die Lösung des linearen Optimierungsproblem

Minimiere λ

u.d.N. Y ≥ X

U− Y

R
= 0

λ−UTQ1 = 0

:

λ−UTQJ = 0

λ ∈ R,Y ∈ RK erreichbar ,U ∈ RK



Dann gilt

λ+ = V +(X)

1.7.8 Satz: Es seiX eine bedingte Auszahlung undQ1, ...,QJ ∈
M = W⊥ ∩ P+ eine Basis von W⊥, wobei W = {Z|Z =

Vh
1/R−Vh

0}.

Es sei λ− die Lösung des linearen Optimierungsproblem

Maximiere λ

u.d.N. Y ≤ X

U− Y

R
= 0

λ−UTQ1 = 0

:

λ−UTQJ = 0

λ ∈ R,Y ∈ RK erreichbar ,U ∈ RK

Dann gilt

λ− = V −(X)

1.7.9 Satz: Es sei M ̸= ∅. Für jede bedingte Auszahlung
X gilt:

V +(X) = sup
Q∈M
{EQ[X/R1] |Q ∈M}

V −(X) = inf
Q∈M
{EQ[X/R1] |Q ∈M}



1.7.10 Beispiel: Es sei N = 1, r = 1/9, K = 3, S0 =

5, S1(ω1) = 60/9, S1(ω2) = 40/9, S1(ω3) = 30/9.

� Gilt Vollständigkeit für das so de�nierte EPFMM?

� Bestimmen Sie die Menge der Risikoneutralwahrschein-

lichkeiten.

� Bestimmen Sie die Menge der fairen Preise des Auszahl-

ungspro�ls (7, 5, 4)T

� Bestimmen Sie die Menge der fairen Preise des Auszahl-

ungspro�ls (1, 0, 0)T

� Die Auszahlungsmatrix ist

A =


10/9 60/9

10/9 40/9

10/9 30/9

 .

� O�ensichtlich ist Rang(A) = 2 < 3 = K. Also ist

das EPFMM unvollständig!

� Also ist #(M) = 0 oder #(M) = ∞. [#(M) = 1

würde gemäÿ 2'tem Hauptsatz Vollständigkeit impli-

zieren!]

� Schema für das WP



S0 = 5

S1(ω1) =
60
9 , rS(ω1) = 33.33%

S1(ω2) =
40
9 , rS(ω2) = −11.11%

S1(ω3) =
30
9 , rS(ω3) = −33.33%

� Schema für GM

1

B1(ω1) =
10
9 , r(ω1) = r = 11.11%

B1(ω2) =
10
9 , r(ω2) = r = 11.11%

B1(ω3) =
10
9 , r(ω3) = r = 11.11%

Arbitragefrei

� Vermutlich ist das EPFMM arbitragefrei, denn es

gibt keine Anlageform die uniform besser ist.

� Im Zustand ω1 ist das WP besser. In den Zu-

ständen ω2, ω3 ist der GM besser.

� Vermutlich ist es also so: Es gibt unendlich viele RN-

WM: #(M) =∞

b.) Risikoneutralwahrscheinlichkeitsmaÿe

� Wir müssen das LGS (A∗)Tq = (1, 5)T , wobei

(A∗)T =

(
1 1 1

6 4 3

)
.

� Wir suchen nach Lösungen mit qi > 0.



b.) Risikoneutralwahrscheinlichkeitsmaÿe

� Wir gehen also von diesen beiden Gleichungen aus:

q1 + q2 + q3 = 1

6q1 + 4q2 + 3q3 = 5

� Gl. 1 ×(−3) plus Gl. 2:

3q1 + q2 = 2⇒ q2 = 2− 3q1

� Wir beobachten

q2 > 0 ⇔ 2− 3q1 > 0⇔ q1 <
2

3

b.) Risikoneutralwahrscheinlichkeitsmaÿe

� Wir gehen wieder von diesen beiden Gleichungen aus:

q1 + q2 + q3 = 1

6q1 + 4q2 + 3q3 = 5

� Gl. 1 ×(−4) plus Gl. 2:

2q1 − q3 = 1⇒ 2q1 − 1 = q3



� Wir beobachten

q3 > 0 ⇔ 2q1 − 1 > 0⇔ q1 >
1

2

b.) Risikoneutralwahrscheinlichkeitsmaÿe

� Für q1 ∈ (12,
2
3) ist q2 = 2−3q1 > 0 und q3 = 2q1−1 >

0

� Die RNWM werden also durch Wahrscheinlichkeiten

auf der Strecke

q =


λ

2− 3λ

2λ− 1

 =


0

2

−1

 + λ


1

−3
2

 , λ ∈
(
1

2
,
2

3

)

� Für λ = 1/2 bzw. λ = 2/3 erhalten die Punkte

(1/2, 1/2, 0)T respektive (2/3, 0, 1/3)T . Diese de�nie-

ren aber keine RNWM; sondern nur die Endpunkte

der Strecke. Die Risikoneutralelementarwahrschein-

lichkeiten liegen im inneren der Strecke. Die Strecke

liegt auf dem Dreieck q1 + q2 + q3 = 1, qi ∈ [0, 1].

q1

q3

q2



c.) Replikation und Bewertung von X = (7, 5, 4)T

� Die bedingte Auszahlung (7, 5, 4)T ist replizierbar,

denn

� h = ( 9
10,

9
10)

T löst das LGS
10/9 60/9

10/9 40/9

10/9 30/9


(
h0

h1

)
=


7

5

4



� Die Anscha�ungskosten sind V h
0 = 9

10 +
9
10 · 5 = 5.4.

c.) Replikation und Bewertung von X = (7, 5, 4)T

� Die bedingte Auszahlung (7, 5, 4)T ist replizierbar,

deshalb kann man sie mit dem Risikoneutralbewer-

tungsprinzip eindeutig bewerten: Wir wählen z.B. λ =
6
10. Dann q = ( 6

10,
2
10,

2
10)

T und

EQ1

(
X
10
9

)
=

6

10
· 710

9

+
6

10
· 510

9

+
6

10
· 410

9

= 5.4

� Für andere λ ∈ (1/2, 2/3) erhält man ebenfalls 5.4!

d.) Replikation und Bewertung von X = (1, 0, 0)T

� Die bedingte Auszahlung (1, 0, 0)T ist nicht replizier-

bar, denn

� Das folgende LGS hat keine Lösung (das können und



sollen Sie mit Methoden der L.A. selbständig veri�-

zieren!) 
10/9 60/9

10/9 40/9

10/9 30/9


(
h0

h1

)
=


1

0

0


� Also geht Bewertung mit Replikation nicht.

d.) Replikation und Bewertung von X = (1, 0, 0)T

� Wenn q = (q1, q2, q3)
T Risikoneutralelementarwahr-

scheinlichkeiten sind, dann können wir so fair bewer-

ten:

EQ1

(
X
10
9

)
=

9

10
· q1

� Wegen q1 ∈ (1/2, 2/3)T erhalten wir, dass alle Preise

im Intervall (0.45, 0.6) fair sind. Alle anderen Prei-

se sind unfair. Insbesondere sind auch 0.45 und 0.6

unfair!



1.8 Zustandspreise, stochastische

Diskontfaktoren und

Risikoneutralwahrscheinlichkeiten

Für bestimmte Fragestellungen sind anstatt der Risikoneu-

tralwahrscheinlichkeiten drei alternative im Wesentlichen

äquivalente Konzepte nützlich: Zustandspreise, stochas-

tische Diskontfaktoren und Likelihood Quotienten.

1.8.1 De�nition: ψ ∈ RK
>0 heiÿt Zustandspreisvektor,

falls

ATψ = S̄0

gilt. Ausgeschrieben ergibt sich
Rf

1 Rf
1 ... Rf

1 Rf
1

S1
1(ω1) S1

1(ω2) ... S1
1(ωK−1) S1

1(ωK)

: : : : :

SN
1 (ω1) SN

1 (ω2) ... SN
1 (ωK−1) SN

1 (ωK)



ψ(ω1)

ψ(ω2)

:

ψ(ωK)

 =


1

S1
0

:

SN
0

 ,

d.h. für die Wertpapiere mit den Kennnummern i = 1, ..., N

gilt

Si0 =

K∑
k=1

Si1(ωk)ψ(ωk)

und aus der Gleichung für den Geldmarkt ergibt sich

1 =

K∑
k=1

Rf
1ψ(ωk).

1.8.2 Satz: Es gibt genau dann einen Zustandspreisvek-

tor, wenn es ein Risikoneutralwahrscheinlichkeitsmaÿ gibt.



1.8.3 Bemerkung: Das Wertpapier mit der Wertpapier-

nummer j mit der Auszahlung12 Sj1(ωk) = δjk heiÿtArrow-

Debreau-Wertpapier.13 Für einen Zustandspreisvektor

ψ ∈ RK
>0 erhalten wir für die Arrow-Debreau-Wertpapiere

Sj0 =
K∑
k=1

ψkS
j
1(ωk) = ψj.

Es kostet also ψj Geldeinheiten, um sich für genau den

Zustand j die Zahlung einer Geldeinheit zu reservieren.

Die Bezeichnung Zustandspreis ist also passend: Man kann

für diesen Preis genau für diesen Zustand eine Zahlung von

1 Geldeinheit sichern.

1.8.4 Bemerkung: Die Gleichung ATψ = S̄0 können

wir als Bewertungsgleichungen für die Basiswertpapiere mit

den Kennnummern i = 1, ..., N au�assen. Diese Preise sind

aber gegeben und wir benötigen gar keine Bewertungsglei-

chungen für diese Wertpapiere. Wir sind eigentlich an der

Bewertung von erreichbaren Pro�len X ∈ Col(A) interes-

siert. Die naheliegende Frage, ob sich die Bewertungsglei-

chung auch auf X ∈ Col(A) überträgt, haben wir schon

für Risikoneutralwahrscheinlichkeiten a�rmativ beantwor-

tet. Ein analoges Resultat gilt für Zustandspreise.

1.8.5 Satz: Das EPFMM sei arbitragefrei und ψ ein Zu-

standspreisvektor. Es sei zudem X ∈ Col(A) und pX der
12δjk bezeichnet hier das Kronecker Delta.
13Über Kenneth Arrow https://de.wikipedia.org/wiki/Kenneth_Arrow und

über Gerald Debreu https://de.wikipedia.org/wiki/Gerard_Debreu

https://de.wikipedia.org/wiki/Kenneth_Arrow
https://de.wikipedia.org/wiki/Gerard_Debreu


faire Preis von X. Dann gilt

pX = XTψ = X •ψ.

1.8.6 Beispiel: Es sei r = 1
9 = 0.11, S0 = 5, S1(ω1) =

60
9 , S1(ω2) = 40

9 . p1 = 3
4, p2 = 1

4. Die Risikoneutralwahr-

scheinlichkeiten haben wir bereits bestimmt: Es gilt q1 =
1
2, q2 =

1
2. Um die Zustandspreise zu bestimmten, löst man(

10
9

10
9

60
9

40
9

)(
ψ1

ψ2

)
=

(
1

5

)
.

Die eindeutig bestimmte Lösung des LGS ist ψ1 = 0.45, ψ2 =

0.45.

1.8.7 De�nition: Eine Zufallsvariable m : Ω → R>0 �

bzw. m ∈ RK � heiÿt stochastischer Diskontfaktor,

falls für den Geldmarkt bzw. für Wertpapierpreise gilt: Die Positivität wird von

Back [1, Seite 52] nicht

vorausgesetzt; von z.B.

Munk [35] schon.

1 =

K∑
k=1

P(ωk)m(ωk)R
f
1 = EP(mRf

1 ),

Si0 =

K∑
k=1

P(ωk)m(ωk)S
i
1(ωk) = EP(mSi1), i = 1, ..., N.

1.8.8 Bemerkung: i.) Für die Bestimmung der Risiko-

neutralwahrscheinlichkeiten kann man das lineare Gleichungs-

system

(A∗)Tq = S̄0



und zur Bestimmung der Zustandspreise das LGS

(A)Tψ = S̄0.

Für die stochastischen Diskontfaktoren erhalten wir eben-

falls ein lineare LGS

(A)T Diag(p1, ..., pk)m = S̄0.

Wenn (jeweils) eine Lösung ≫ 0 vorliegt, dann liegen Ri-

sikoneutralwahrscheinlichkeiten, Zustandspreise bzw. sto-

chastische Diskontfaktoren vor.

ii.) Wenn der Rang(A) = K, dann können wir auch den

Trick von vorne verwenden, um eine Lösung zu suchen.

Dann ist nämlich Rang(AAT ) = K. Also ist AAT inver-

tierbar. Dann können wir wie folgt umformen:

(A)Tψ = S̄0

⇒ A(A)Tψ = AS̄0

⇒ ψ = (A(A)T )−1AS̄0.

Analog geht das auch für die stochastischen Diskontfakto-

ren.

iii.) Wenn K > N+1 (das passt besser zur Realität), dann

hat das LGS (A)Tψ = S̄0 weniger Gleichungen (nämlich

N + 1) als Unbekannte (jedes Wertpapier stiftet eine Glei-

chung). Wenn es eine Lösung gibt, dann gibt es unendlich

viele. Frage: Kann man mit

dem Darstellungssatz von

Riesz eine Lösung �nden?



1.8.9 Bemerkung: Es sei m ein stochastischer Diskont-

faktor. Es gilt

EP(m) =
1

Rf
1

= Z.

Für den Diskontfaktor 1

R
f
1

einer risikolosen Zahlung ver-

wenden wir die Notation Z. Die Bemerkung besagt, dass

der Erwartungswert des stochastischen Diskontfaktors Z

ist.

1.8.10 Satz: Es gibt genau dann einen stochastischen Dis-

kontfaktor, wenn es ein risikoneutrales Wahrscheinlichkeits-

maÿ gibt.

▶ Auch für stochastische Diskontfaktoren gilt die Fortset-

zungseigenschaft von den Basisprodukten zu den erreich-

baren Pro�len.

1.8.11 Satz: Das EPFMM sei arbitragefrei und m ein

stochastischer Diskontfaktor. Es sei zudem X ∈ Col(A)

und pX der faire Preis von X. Dann gilt

pX = EP(mX).

1.8.12 Beispiel: Es sei r = 1
9 = 0.11, S0 = 5, S1(ω1) =

60
9 , S1(ω2) = 40

9 . p1 = 3
4, p2 = 1

4. Die Risikoneutralwahr-

scheinlichkeiten haben wir bereits bestimmt: Es gilt q1 =
1
2, q2 =

1
2. Auch die Zustandspreise haben wir bestimmt. Es



gilt ψ1 = 0.45, ψ2 = 0.45. Den stochastischen Diskontfak-

toren bestimmen wir mit der Formel

mi =
1

1 + r

(
qi
pi

)
.

Es gilt m1 = 0.6,m2 = 1.8.

1.8.13 De�nition: Eine Zufallsvariable d : Ω → R>0 �

bzw. d ∈ RK � heiÿt Likelihood Quotient bzw. Radon-

Nikodym-Ableitung, falls gilt:

1 =

K∑
k=1

P(ωk)d(ωk) = EP(d),

Si0 =

K∑
k=1

P(ωk)d(ωk)
Si1(ωk)

Rf
1

= EP

(
d
Si1

Rf
1

)
, i = 1, ..., N.

1.8.14 Satz: Es gibt genau dann einen Likelihood Quoti-

enten, wenn es ein risikoneutrales Wahrscheinlichkeitsmaÿ

gibt.

▶ Es gilt d(ωk) =
Q(ωk)
P(ωk)

. Deshalb ist die Bezeichnung Like-

lihood Quotient passend. Warum auch der Name Radon-

Nikodym Ableitung passend ist, erschlieÿt sich erst, wenn

man zeitstetige zustandsstetige Finanzmathematik betreibt.

1.8.15 Satz: Das EPFMM sei arbitragefrei und d ein Li-

kelihood Quotient. Es sei zudem X ∈ Col(A) und pX der



faire Preis von X. Dann gilt

pX = EP
(
d

X

Rf

)
.

1.8.16 Bemerkung: Wir betrachten die vier Wertpa-

pierbewertungsgleichungen wegen der besseren Vergleich-

barkeit nochmal gemeinsam:

Si0 =

K∑
k=1

ψ(ωk)S
i
1(ωk)

Si0 =

K∑
k=1

P(ωk)m(ωk)S
i
1(ωk) = EP(mSi1)

Si0 =

K∑
k=1

Q(ωk)
Si1(ωk)

Rf
1

= EQ

(
Si1

Rf
1

)

Si0 =

K∑
k=1

P(ωk)d(ωk)
Si1(ωk)

Rf
1

= EP

(
d
Si1

Rf
1

)
.

An den oben stehenden Gleichungen kann man mit Koef-

�zientenvergleich die Umrechnungsregeln ablesen:

� Wenn ψ ∈ RK
>0 ein Zustandspreisvektor ist, dann ist

durch m(ωi) =
ψ(ωi)
P(ωi)

ein stochastischer Diskontfaktor

und durch Q(ωi) = ψ(ωi)R
f
1 eine Risikoneutralwahr-

scheinlichkeit de�niert. Ein Likelihood Quotient ist

d(ωk) =
ψ(ωi)
P(ωi)

Rf
1 .

� WennQ eine Risikoneutralwahrscheinlichkeit ist, dann

ist durch m(ωi) =
Q(ωi)

P(ωi)R
f
1

ein stochastischer Diskont-

faktor und durch ψ(ωi) = Q(ωi)

R
f
1

ein Zustandspreis-



vektor de�niert. Ein Likelihood Quotient ist durch

d(ωk) =
Q(ωk)
P(ωk)

de�niert.

� Wenn m ein stochastischer Diskontfaktor ist, dann

ist durch ψ(ωi) = P(ωi)m(ωi) und durch Q(ωi) =

P(ωi)m(ωi)R
f
1 eine Risikoneutralwahrscheinlichkeit de-

�niert. Ein Likelihood Quotient ist durch d(ωk) =

m(ωk)R
f
1 de�niert.

� Wenn d ein Likelihood Quotient ist, dann istQ(ωk) =

P(ωk)d(ωk) eine Risikoneutralwahrscheinlichkeit und
m(ωk) = d(ωk)

R
f
1

. Ein Zustandspreisvektor ist durch

ψ(ωk) =
P(ωk)d(ωk)

R
f
1

de�niert.

1.8.17 Bemerkung: Wir haben drei Darstellungen der

Wertpapierbewertung für erreichbare Pro�le als Erwar-

tungswerte:

pX = EQ
(
X

Rf

)
pX = EP

(
d

X

Rf

)
pX = EP(mX)

Der stochastische Diskontfaktor und die Radon-Nikodym-

Ableitung werden gemeinsam mit dem empirischen Wahr-

scheinlichkeitsmaÿ P verwendet. Wenn man (nur) den Zins
1
Rf der risikolosen Anlageform zum diskontieren verwendet,

dann muss man zum Risikoneutralwahrscheinlichkeitsmaÿ

Q wechseln.



1.8.18 Bemerkung Interpretation m(ω) = Q(ω)

P(ω)Rf
1

: Der

Diskontfaktor für risikolose Pro�le ist 1

R
f
1

. Mit diesem Fak-

tor werden risikolose Zahlungen diskontiert. Um Risiko-

aversion zu erfassen und riskante Zahlungen zu diskontie-

ren wird Z = 1

R
f
1

noch mit dem Likelihood Quotient der

Wahrscheinlichkeiten Q(ω)
P(ω) multipliziert. Das geschieht Zu-

stand für Zustand bevor der Erwartungswert (bezüglich P)
gebildet wird. Wir hatten für den Fall K = 2 gesehen, dass

gute Zustände in der Q-Welt typischerweise eine geringere

Wahrscheinlichkeit haben als in der P-Welt. Der Likelihood

Quotient Q(ω)
P(ω) ist für den guten Zustand kleiner als 1 und

für den schlechten Zustand gröÿer als. Zahlungen in guten

Zuständen werden stärker abgewertet, denn Zahlungen in

guten Zuständen sind nicht so wertvoll, wie Zahlungen in

schlechten Zuständen. (Wenn K > 2 ist, dann ist es leider

unübersichtlicher.)

Wir betrachten wieder das Beispiel einer Lotterie mit P(X =

100) = 1/2 und P(X = 50) = 1/2. Wir nehmen an,

dass Rf = 1 ist und der faire Preis der Lotterie gleich

70. Wir hatten die Risikoneutralwahrscheinlichkeiten be-

stimmt: Q(X = 100) = 2/5, Q(X = 50) = 3/5. Dann ist

Q(X = 100)/P(X = 100) = 4/5 (also wie angekündigt

kleiner 1 für den guten Zustand) und Q(X = 50)/P(X =

50) = 6/5 (also wie angekündigt gröÿer 1 für den guten

Zustand).



Wir überprüfen pX = EP(mX)

1

2
· 4
5
· 100 + 1

2
· 6
5
· 50 = 1

2
· 80 + 1

2
· 60 = 70.

Bei dieser Form den fairen Wert zu bestimmen, werden die

Auszahlungen angepasst und die empirischen Wahrschein-

lichkeiten P verwenden.

1.8.19 Bemerkung: i.) Wir beobachten für erreichbare

Pro�le X Vgl. Munk [?, Seite 97]

pX = EP(mX)

= EP(m)EP(X) + cov(m,X)

= Z · EP(X) + cov(m,X)

=
EP(X)

Rf
1

+ cov(m,X).

Der Preis des Wertpapiers ergibt sich also aus der diskon-

tierten erwarteten Auszahlung zuzüglich einer Risikoan-

passung cov(m,X) (die aber auch negativ sein kann).

Typischerweise � jedenfalls für viele Wertpapiere � gilt

pX < EP(X)

R
f
1

, denn Anleger wollen für die Übernahme von

Risiken entschädigt werden und zahlen deshalb weniger als

den diskontierten Erwartungswert. Also ist cov(m,X) ty-

pischerweise negativ. Gemäÿ pX = EP(X)

R
f
1

+ cov(m,X) ist

also cov(m,X) dann ein Risikoabschlag, den der Anleger

als Kompensation für die Übernahme von Risiken erwartet

(im obigen Beispiel beträgt der Abschlag 5 [von 75 auf 70]).



Im nächsten Abschnitten werden wir diesen Abschlag bzw.

die sogenannte Risikoprämie nochmal untersuchen.

Für Finanzprodukte mit cov(m,X) > 0 ist der Preis so-

gar gröÿer als der diskontierte Erwartungswert. Finanz-

produkt mit cov(m,X) > 0 erzeugen einen Versicherungs-

e�ekt/Hedginge�ekt, der einen scheinbar zu hohen Preis

rechtfertigt (nämlich gröÿer als der diskontierte Erwartungs-

wert).

Insbesondere gilt für Finanzprodukte mit cov(m,X) > 0

pX =
EP(X)

Rf
1

+ cov(m,X) >
EP(X)

Rf
1

= pµX1.

wobei µX = EP(X). Die Ungleichung pX > pµX1 bedeutet,

dass X teurer (wertvoller) als µX1 ist, obwohl die beiden

Pro�le den gleichen Erwartungswert haben und die Lotte-

rie X riskanter als die konstante Zahlung µX1 (insbeson-

dere V(X) > V(µX1) = 0) ist.

ii.) Demnach ist insbesondere auch die Varianz der Zah-

lung eines Finanzproduktes kein geeigneter Maÿstab für

das bewertungsrelevante Risiko eines Wertpapiers. Be-

zogen auf die Bewertung ist es falsch Risiken isoliert zu

erfassen. Für die Bewertung ist die Kovarianz zum sto-

chastischen Diskontfaktor ausschlaggebend!



Gemäÿ

pX =
EP(X)

Rf
1

+ cov(m,X).

erfasst die Kovarianz cov(m,X) den Risikoabschlag. Das

bewertungsrelevante Risiko wird also durch cov(m,X) er-

fasst und nicht durch V(X).

Für Wertpapiere mit cov(m,X) = 0 gilt insbesondere

pX =
EP(X)

Rf
1

,

selbst dann wenn und V(X) > 0.

1.8.20 Bemerkung (Give me �ve): Insgesamt kennen

wir jetzt 5 Bewertungsgleichungen:

pX =

K∑
k=1

ψ(ωk)X(ωk)

pX =

K∑
k=1

P(ωk)d(ωk)
X(ωk)

Rf
= EP

(
d

X

Rf

)

pX =

K∑
k=1

P(ωk)m(ωk)X(ωk) = EP(mX)

pX =

K∑
k=1

Q(ωk)
X(ωk)

Rf
= EQ

(
X

Rf

)
pX = EP

(
X

Rf

)
+ cov(m,X)

1.8.21 Bemerkung: Wir beobachten Vorzeichen von λ. Bei

Cochrane mit - Zeichen.



pX = EP
(
X

Rf

)
+ cov(m,X)

= EP
(
X

Rf

)
+
Rf

Rf

V(m)

V(m)
cov(m,X)

= EP
(
X

Rf

)
+
Rf V(m)

Rf

cov(m,X)

V(m)

= EP
(
X

Rf

)
+

1

Rf

V(m)

E(m)

cov(m,X)

V(m)

= EP
(
X

Rf

)
+

1

Rf
λmβX,m.

λm = V(m)
E(m) erfasst den Preis des Risikos und βX,m =

cov(m,X)
V(m) das Ausmaÿ (die Quantität) des Risikos. Ge-

mäÿ

pX = EP
(
X

Rf

)
+

1

Rf
λmβX,m

=
1

Rf

(
EP (X) + λmβX,m

)
setzt sich der faire Preis für X aus drei Komponenten zu-

sammen:

� Dem diskontierten Erwartungswert EP ( X
Rf

)
. Das wä-

re der Preis bei Risikoneutralität, wenn die Anleger

keine Kompensation für die Übername von Risiko er-

warten würden.

� Dem bewerteten Risiko βX,m des Wertpapiers. Das

Wertpapier mit der Auszahlung X ist riskant. Es ist

naheliegend dieses Risiko durch die Varianz zu mes-

sen und zu vermuten, dass eine höhere Varianz mit



einem geringerem Preis einhergeht. Das ist jedoch un-

genau. Wir müssen genau den Teil des Risikos erfas-

sen, der in den Preis für das Wertpapier eingeht. Die-

ser bewertete Teil ist βX,m; die skalierte Kovarianz.

� Dem (diskontierten) Preis des Risikos λm.

Die Anpassung für das Risiko ergibt sich aus dem Produkt

βX,m für Ausmaÿ des Risikos und dem Preis λm je Risiko.

Insgesamt � einschlieÿlich der Diskontierung � erhalten wir

die Anpassung 1
RfλmβX,m.

Hinweis zum Vorzeichen von λ: In der Literatur � z.B.

in Cochrane [5, Seite 16] und Munk [35, Seite 97] � wird

pX = EP
(
X

Rf

)
+

1

Rf
λmβX,m

in der Form

pX = EP
(
X

Rf

)
− 1

Rf
λ̃mβX,m

mit λ̃m = −V(m)
E(m) angegeben. Mich verwirrt aber minus

minus und an dieser Stelle ist der (doppelte) Wechsel der

Vorzeichen aus meiner Sicht nicht nützlich. Ich ho�e, dass

durch diesen Hinweis etwaige Missverständnisse vermieden

werden können.

1.8.22 Beispiel: Es sei r = 1
9 = 0.11, S0 = 5, S1(ω1) =

60
9 , S1(ω2) =

40
9 . p1 =

3
4, p2 =

1
4. Das EPFMM ist vollständig



und arbitragefrei. Wir haben folgendes berechnet:

Risikoneutralwahrscheinlichkeit q1 = 0.5, q2 = 0.5

Zustandspreise ψ1 = 0.45, ψ2 = 0.45

Stochastische Diskontfaktoren m1 = 0.6,m2 = 1.8

Wir beobachten, dass der erste Zustand der bessere ist,

denn dort ist die Auszahlung des riskanten Wertpapier hö-

her. Die Anleger sind risikoavers, denn der beobachtete

Preis S0 = 5, ist geringer als der diskontierte Erwartungs-

wert 9
10 ·
(
3
4 ·

60
9 + 1

4 ·
40
9

)
= 5.5.

Die Risikoneutralwahrscheinlichkeit für den guten Zustand

ist niedriger als die empirische Wahrscheinlichkeit. .....

5 =
9

10
·
(
1

2
· 60
9
+

1

2
· 40
9

)

Auch am stochastischen Diskontfaktor kann man die An-

passung wegen der Risikoaversion ablesen.

5 =

(
3

4
· 6
10
· 60
9
+

1

4
· 18
10
· 40
9

)
anstatt

5.5 =

(
3

4
· 9
10
· 60
9
+

1

4
· 9
10
· 40
9

)
Die Auszahlung im guten Zustand wird stark mit 6

10 dis-

kontiert (anstatt mit 9
10) und die Auszahlung im schlechten

Zustand sogar mit 18
10 vergröÿert.



Für die Replikation vergleiche https://www.mathstat.

de/EPFMM_1_1_2_ff.R bzw. https://www.mathstat.de/

EPFMM_1_1_2_ff.py

1.8.23 Beispiel: Wir betrachten jetzt (noch) ausführli-

cher ein einfaches Beispiel und deklinieren alle Argumente

einschlieÿlich Interpretation durch. Es sei r = 0.1, S0 = 10,

S1(ω1) = 12.5, S1(ω2) = 10. p1 = 1
2, p2 =

1
2.

Wir nutzen R oder Python und bestimmen die Risikoneu-

tralwahrscheinlichkeiten, die Zustandspreise und die sto-

chastischen Diskontfaktoren. Es gilt

Risikoneutralwahrscheinlichkeit q1 = 0.4, q2 = 0.6

Zustandspreise ψ1 = 0.36, ψ2 = 0.54

Stochastische Diskontfaktoren m1 = 0.72,m2 = 1.09

Die wirklichen Wahrscheinlichkeiten sind p1 = 1
2, p2 = 1

2

und der diskontierte Erwartungswert der riskanten Aus-

zahlung ist

1

1.1

(
1

2
· 12.5 + 1

2
· 10
)

= 10.22727.

Das wäre bei Risikoneutralität der Preis des riskantenWert-

papiers. Gezahlt wird aber 10. In Geldeinheiten beträgt der

Risikoabschlag demnach 0.22727.

Wir wissen schon, dass wir die Risikoaversion durch einen

Wechsel der Wahrscheinlichkeiten erfassen können und dann

https://www.mathstat.de/EPFMM_1_1_2_ff.R
https://www.mathstat.de/EPFMM_1_1_2_ff.R
https://www.mathstat.de/EPFMM_1_1_2_ff.py
https://www.mathstat.de/EPFMM_1_1_2_ff.py


die Risikoneutralbewertungsformel erhalten:

10 = EP
(

S1

1 + r

)
=

1

1.1
(0.4 · 12.5 + 0.6 · 10)

Wir rechnen mit pessimistischeren Wahrscheinlichkeiten.

Der gute Zustand wird unwahrscheinlicher und der schlech-

te wahrscheinlicher.

Ähnlich funktionieren Zustandspreise. Wenn Risikoneutra-

lität gelten würde, dann hätte bei Zustände den gleichen

Wert (Zustandspreis); nämlich 0.45. Im Vergleich zu die-

sem Benchmark wird der Zustandspreis des guten Zustand

herabgesetzt und der des schlechten Zustand herauf.

Ebenfalls ähnlich funktionieren stochastische Diskontfakto-

ren. Bei Risikoneutralität diskontieren wir mit 1/1.1 = 0.90

und bilden den Erwartungswert mit den empirischen Wahr-

scheinlichkeiten:

10.22727 = 0.5 ∗ (1/1.1) ∗ 12.5 + 0.5 ∗ (1/1.1) ∗ 10

= 0.5 ∗ 0.90 ∗ 12.5 + 0.5 ∗ 0.90 ∗ 10

Um die Risikoaversion zu erfassen, rechnen wir mit sto-

chastischen Diskontfaktoren

10 = 0.5 ∗ 0.72 ∗ 12.5 + 0.5 ∗ 1.09 ∗ 10

Auch hier wird die Diskontierung zu Ungunsten des guten

Zustand angepasst.



Auch die vielleicht merkwürdige Formel

pS1 = EP
(
S1

Rf

)
+ cov(m, S1)

kann so leicht interpretiert werden

10 = 10.22727− 0.22727

denn cov(m, S1) = −0.22727. Die Kovarianz ist negativ

und deshalb erhalten wir einen Abschlag (wir müssen et-

was vom diskontierten Erwartungswert abziehen). Der Ab-

schlag in Höhe von 0.22727 ergibt sich, weil das Wertpapier

in dem Zustand wenig zahlt � nämlich 10 � in dem wir ei-

ne Zahlung hoch bewerten (gering diskontieren) � nämlich

mit 1.09 sogar aufzinsen.

Auch die Formel

pS1 = EP
(
S1

Rf

)
+

1

Rf
λmβS1,m.

wird mit konkreten Werten leicht interpretierbar:

10 = 10.22727 +
1

1.1
· 0.036 · (−6.875)

denn

λm =
V(m)

E(m)
= 0.036

βS1,m =
cov(m, S1)

V(m)
= −6.875



1.9 Marktpreis des Risikos

Risikoprämie
Risiko

1.10 Darstellungssatz von Riesz für SDFs

Wir betrachten zunächst einige Resultate der linearen Al-

gebra und nutzen diese dann für die Herleitung der �nanz-

wirtschaftlichen/�nanzmathematischen Ergebnisse.

Dieser Abschnitt könnte Ihre Geduld strapazieren. Viel-

leicht schauen Sie sich zuerst das zentrale Ergebnis (1.10.8)

an. Sie können dann entscheiden, ob Sie die Hintergrün-

de bzw. Beweise benötigen oder ob Ihnen das Ergebnis in

(1.10.8) reicht.

1.10.1 De�nition: Es sei V ein Vektorraum. Eine Abbil-

dung ⟨·, ·⟩ : V × V → R , (x,y) 7→ ⟨x,y⟩ heiÿt inneres
Produkt, falls für alle α1, α2 ∈ R und x,y,x1,y1,x2,y2 ∈
V gilt:

i.) ⟨·, ·⟩ ist bi-linear

⟨α1x1 + α2x2,y⟩ = α1⟨x1,y⟩ + α2⟨x2,y⟩

⟨x, α1y1 + α2y2⟩ = α1⟨x,y1⟩ + α2⟨x,y2⟩

ii.) ⟨·, ·⟩ ist symmetrisch ⟨x,y⟩ = ⟨y,x⟩.



iii.) ⟨·, ·⟩ ist positiv de�nit. ⟨x,x⟩ ≥ 0 für alle x ∈ V
und ⟨x,x⟩ > 0 falls x ̸= 0.

1.10.2 Bemerkung: i.) Durch x • y =
∑

i=1,...,n xiyi ist

aufRn das sogenannte Standardskalarprodukt de�niert.

ii.) Gilt a • x = b • x für alle x ∈ Rn, dann ist a = b.

1.10.3 Satz: Es seiA eine Matrix mit Spalten ai ∈ RK, i =

1, ..., d und ⟨·, ·⟩ ein inneres Produkt auf V = Col(A) =

Spann(a1, ..., ad); V ist der von den Spalten von A aufge-

spannte Vektorraum.

Dann gilt für x,y ∈ V :

⟨x,y⟩ = (xα)T


⟨a1, a1⟩ ... ⟨a1, ad⟩
... ... ...

⟨ad, a1⟩ ... ⟨ad, ad⟩

 (yα)

= (xα)T ⟨A,A⟩(yα),

wobei die Einträge von xα ∈ Rd die Koe�zienten von

x = xα1a1 + ... + xαdad bezüglich des Erzeugendensystems

{a1, ..., ad} des Vektorraums Col(A) sind (analog für yα)

und

⟨A,A⟩ :=


⟨a1, a1⟩ ... ⟨a1, ad⟩
... ... ...

⟨ad, a1⟩ ... ⟨ad, ad⟩

 .



1.10.4 De�nition: Es sei A eine Matrix mit Spalten ai ∈ die Voraussetzung l.u. ist

für später (Invertierbar-

keit) notwendig. Die De�-

nition kann man auch oh-

ne die De�nition ausspre-

chen.

RK, i = 1, ..., d und ⟨., .⟩ ein inneres Produkt auf dem Vek-

torraum V = Col(A) = Spann(a1, ..., ad). Wir de�nieren

die d× d Matrix Gram Matrix? AAT oder

ATA, wenn Standardska-

larprodukt?

⟨A,A⟩ =


⟨a1, a1⟩ ... ⟨a1, ad⟩
... ... ...

⟨ad, a1⟩ ... ⟨ad, ad⟩

 ∈ Rd×d.

1.10.5 Satz: Es sei A eine Matrix mit linear unabhängi-

gen Spalten ai ∈ RK, i = 1, ..., d und ⟨., .⟩ ein inneres Pro-

dukt auf dem d-dimensionalen Vektorraum V = Col(A) =

Spann(a1, ..., ad). Die d× d Matrix

⟨A,A⟩ =


⟨a1, a1⟩ ... ⟨a1, ad⟩
... ... ...

⟨ad, a1⟩ ... ⟨ad, ad⟩

 ∈ Rd×d

ist invertierbar. ⟨A,A⟩ = ATPA; immer

von dieser Form?

Beweis (siehe Ho�mann und Kunze [19, Seite 274 f]): An-

genommen ⟨A,A⟩ wäre nicht invertierbar. Dann gibt es

xα ̸= 0 mit

⟨A,A⟩xα = 0.

Dann mit x = Axα

⟨x,x⟩ = (xα)T ⟨A,A⟩(xα) = 0



Dann muss x = 0 sein, denn ⟨., .⟩ ist gemäÿ Annahme ein

inneres Produkt. Also 0 = Axα, so dass xα = 0 (denn die

Spalten von A sind linear unabhängig). Wir erhalten einen

Widerspruch.

▶ Wir benötigen die folgende Variante des Darstellungs-

satz von Riesz (vgl. z.B. Garcia und Horn [11, S. 177]).

oder auch Axler [?, Seite

205]

1.10.6 Satz: Es sei A eine Matrix mit linear unabhängi-

gen Spalten ai ∈ RK, i = 1, ..., d und f : Col(A)→ R eine

lineare Abbildung (ein sogenanntes lineares Funktional auf

Col(A)) und ⟨·, ·⟩ ein inneres Produkt. Dann gibt es ein

eindeutig bestimmtes y ∈ Col(A) ⊂ RK mit

f (x) = ⟨x,y⟩,x ∈ Col(A).

In der Tat gilt Gibt es einen

Zusammenhang zur Form

(1.6.5)?

y = A(⟨A,A⟩)−1


f (a1)

...

f (ad)

 = A(⟨A,A⟩)−1f (A),

wobei wir kompakt

f (A) =


f (a1)

...

f (ad)

 ∈ Rd

schreiben.



▶ Das bemerkenswerte ist, dass y ∈ Col(A) ist. Wir wer-

den (natürlich)A als eine Auszahlungsmatrix eines EPFMM

au�assen. y ∈ Col(A) bedeutet dann, dass y erreichbar Wie soll ich mit der ers-

ten Spalte von A umge-

hen? ..... = 1ist. Wir werden sehen, dass das eindeutig bestimmte y ∈
Col(A) mit der im Satz genannten Darstellungseigenschaft

ein besonders nützliches erreichbares Pro�l ist.

▶ Wir werden jetzt den Satz von Riesz mit der Bewertung

von erreichbaren Pro�len in Verbindungen bringen. Wir

benötigen dafür noch das folgende Resultat. Es wird ein

neues Skalarprodukt eingeführt.

1.10.7 Satz: Es sei P ein diskretes Wahrscheinlichkeits-

maÿ mit P(ω) > 0 für alle ω ∈ Ω für ein endliches Ω =

{ω1, ..., ωK}. Für ZufallsvariablenX,Y de�nieren wir ⟨X,Y⟩ =
EP(XY). Dann ist ⟨·, ·⟩ ein inneres Produkt.

▶Wir bezeichnen das Standardskalarprodukt von x,y mit

x•y =
∑

i=1,...,K xiyi und verwenden die spitzen Klammern

für das oben eingeführte Skalarprodukt

⟨X,Y⟩ = EP(XY) =
∑

i=1,...,K

pixiyi.

1.10.8 Satz: Wir betrachten ein arbitragefreies EPFMM

mit der Auszahlungsmatrix A. Für alle erreichbare Pro�le

X ∈ Col(A) sei pX der eindeutig bestimmte faire Preis der

erreichbaren bedingten Auszahlung X.

i.) Für erreichbare Pro�le X bzw. Y in Col(A) und reelle



Zahlen a, b ∈ R gilt:

paX+bY = apX + bpY.

Die Abbildung (derBewertungsoperator) p(·) : Col(A)→
R,X 7→ pX ist also linear (also ein lineares Funktional auf

Col(A)).

ii.) Wir betrachten ein arbitragefreies EPFMM mit der

Auszahlungsmatrix A. Die Spalten von A seien zudem li-

near unabhängig (d.h. Rang(A) = N + 1). Es gibt ein

eindeutig bestimmtes x∗ ∈ Col(A) mit Zusammenhang zu

(1.6.5)?

pX = ⟨x∗,X⟩ = EP(x∗X).

Es gilt in der Tat ..... x∗ sieht wie eine SDF

aus ist aber i.A. nicht � 0,

oder?. Gegenbeispiel?

x∗ = A(⟨A,A⟩)−1S̄0.

An dieser Formel kann

man direkt ablesen, dass

x∗ in Col(A) liegt.

1.10.9 Bemerkung: Gemäÿ

pX = ⟨x∗,X⟩ = EP(x∗X).

können wir Bewertungsprobleme mit x∗ als pX = EP(x∗X)

schreiben, d.h. x∗ funktioniert wie ein stochastischer Dis-

kontfaktor. Die Existenz von x∗ ergab sich (schon) aus der

Linearität von p(·). Der Satz von Riesz stellt jedoch nicht

x∗ ≫ 0 sicher, so dass x∗ nicht notwendigerweise ein SDF

ist. Andernorts heiÿt ein x∗ mit pX = EP(x∗X) schon SDF.



Vgl. auch Back [1, Seite .....].

1.10.10 Bemerkung: Es gibt einen engen Zusammen-

hang zu Projektionen (vgl. z.B. Back [1, Seite .....]). Wir

betrachten dafür Zustandspreise, da dieser Fall besonders

transparent ist. Wenn Arbitragefreiheit gilt, dann gibt es

Zustandspreise ψ ≫ 0 mit

ATψ = S̄0

Wie oben leitet man eine Riesz DarstellungATψ∗ = S̄0,ψ
∗ ∈

Col(A) mit Vektor ψ∗ = A(ATA)−1S̄0 ab. Wir beobach-

ten dann:

ψ∗ = A(ATA)−1S̄0

= A(ATA)−1ATψ

= PCol(A)ψ

Also ist ψ∗ die Projektion von ψ auf Col(A); vgl. Meyer

[33, Seite 430].

Wenn man Zustandspreise hat, dann kann man so leicht

ψ∗ bestimmen. Der Satz von Riesz liefert ψ∗ direkt gemäÿ

ψ∗ = A(ATA)−1S̄0

Trotzdem ist es gut zu wissen, dass ψ∗ die Projektion von

ψ. Vgl. dazu Back [1, Seite .....] und Cochrane [5, Seite

.....].

1.10.11 Beispiel: Siehe R Code b zu unvollständigen Märk-



ten.

1.11 σ-minimale Zahlungspro�le

In wohl jedem Buch über Finanzwirtschaft (mathematisch

oder nicht) werden µ-σ-optimale Anlageformen erläutert.

Die originären Arbeiten stammen von Markowitz (vgl. [31]

und [32]). Wir werden bestimmte Aspekte dieser Analyse

jetzt in für uns passender Form behandeln; nämlich mit

für die Bewertung relevanten Aspekte. Das Thema greifen

wir später nochmal in der klassischen Form auf.

Es wird sich zeigen, dass wir sehr weitreichende Resultate

erhalten, die zudem unsere Intuition schärfen. Dieser Ab-

schnitt orientiert sich an Skiadas [46, Kapitel 1 und 2].

1.11.1 De�nition: Ein Zahlungspro�lX∗ heiÿt σ-minimal,

wenn

V(X∗) = min
X
{V(X) | pX = pX∗ und E(X) = E(X∗)}.

Also: Jedes andere im Vergleich zu X∗ gleich teure Zah-

lungspro�l X mit der gleichen erwarteten Auszahlung hat

eine mindestens so hohe Varianz wie X∗.

1.11.2 Bemerkung: Das EPFMM sei arbitragefrei und

die AuszahlungsmatrixA habe vollen Spaltenrang (die Spal-

ten von A sind linear unabhängig). Es sei zudem 1 ∈



Col(A) und x∗ ∈ Col(A) das gemäÿ Satz 1.10.8 eindeu-

tig bestimmte Pro�l mit pX = ⟨x∗,X⟩ = EP(x∗X),X ∈
Col(A).14

Dann beobachten wir

Z = p1 = EP(x∗1) = EP(x∗).

Also

EP(x∗) =
1

Rf
,

wobei wir einerseits die Notation Z = p1 einführen und

andererseits beachten, dass Rf die Bruttoverzinsung der

sicheren Anlageform bezeichnet.

1.11.3 Bemerkung: i.) Das EPFMM sei arbitragefrei und

die AuszahlungsmatrixA habe vollen Spaltenrang (die Spal-

ten von A sind linear unabhängig). Es sei zudem 1 ∈
Col(A) und x∗ das gemäÿ Satz 1.10.8 eindeutig bestimmte

Pro�l mit pX = ⟨x∗,X⟩ = EP(x∗X).

Wenn die Vektoren x∗ und 1 linear abhängig sind, dann

gilt für alle X ∈ Col(A)

pX = E(x∗X) = ZE(X) =
1

Rf
E(X).

Also haben alle erreichbarenWertpapiere die erwartete Ren-

dite Rf . Das wäre ein sehr langweiliges/triviales Finanz-

14Diese Voraussetzung ist erfüllt, wenn die Anleger Zugang zu einer risikolosen
Anlageform haben.



marktmodell.

ii.) Wenn die Vektoren 1 und x∗ linear unabhängig sind,

dann gilt

Z2 ̸= px∗.

1.11.4 Satz: Die Auszahlungsmatrix A eines arbitrage-

freien EPFMM sei vom Rang d = N + 1 (so dass die Spal-

ten linear unabhängig sind15). Auf Col(A) betrachten wir

das innere Produkt ⟨X,Y⟩ = EP(XY). Es sei 1 ∈ Col(A)

und x∗ ∈ Col(A) das gemäÿ des Satzes von Riesz 1.10.6

eindeutig bestimmte Pro�l mit der Eigenschaft

pX = ⟨x∗,X⟩ = EP(x∗X).

für alle X ∈ Col(A). Zudem seien 1 und x∗ linear unab-

hängig.

Dann gilt: Ein Zahlungspro�l X∗ ∈ Col(A) ist genau dann

σ-minimal, wenn es Skalare a, b ∈ R mit

X∗ = a1 + bx∗

als ZV: X∗ = a + bx∗

gibt.

1.11.5 Bemerkung:Die beiden linear unabhängigen Vek-

toren 1 und x∗ spannen alle σ-minimalen erreichbaren Pro-

15Keines der Finanzprodukte ist redundant.



�le auf. Die Menge der σ-minimalen Pro�le bilden also

einen 2-dimensionalen Unterraum des RK .

Die Pro�le der Form a1 haben die Varianz Null. Diese

Pro�le sind also von global minimaler Varianz. Der faire

Preis ist pa1 = aZ und die Bruttorendite ist Rf .

Man kann von Rf nach oben abweichende erwartete Rendi-

ten erzielen, wenn man bx∗ zu a1 addiert. Man erhält eine

höhere erwartete Rendite und eine höhere Varianz. Dies

geschieht dann auf σ-minimale Weise.

1.11.6 Bemerkung: Für den etwaigen späteren Gebrauch

notieren wir noch die folgende Beobachtung. Die Menge

der σ-minimalen Pro�le bilden einen 2-dimensionalen Un-

terraum. Man kann demnach auch zwei andere linear un-

abhängige σ-minimale Pro�le als Basis des Raums der σ-

minimalen Pro�le wählen. .....

▶ Das folgende Lemma benötigen wir in einem Beweis des

nächsten Abschnitts. Für sich betrachtet ist es technisch.

1.11.7 Lemma: Die Auszahlungsmatrix A eines arbitra-

gefreien EPFMM sei vom Rang d = N+1 (so dass die Spal-

ten linear unabhängig sind). Auf Col(A) betrachten wir

das innere Produkt ⟨X,Y⟩ = EP(XY). Es sei 1 ∈ Col(A)

und x∗ ∈ Col(A) das gemäÿ des Satzes von Riesz 1.10.6



eindeutig bestimmte Pro�l mit der Eigenschaft

pX = ⟨x∗,X⟩ = EP(x∗X)

für alle X ∈ Col(A). Zudem seien 1 und x∗ linear unab-

hängig.

X∗ ist genau dann ein σ-minimales und nicht-konstantes

Pro�l, wenn es einen Skalar b ̸= 0 gibt, so dass für alle X

pX = EP

(
X

Rf
1

)
+ b cov(X∗,X)

gilt.

1.11.8 Bemerkung: Im Beweis oben fällt δ und damit

die Koe�zienten α, β von X∗ = αx∗ + β1 vom Himmel.

Wir wollen uns überlegen, wie man die Koe�zienten �nden

kann.

Wir beobachten zwei Wege die faire Preis pX zu bestimmen:

pX = EP(x∗X) = EP(x∗)EP(X) + cov(x∗,X)

=
1

Rf
EP(X) + cov(x∗,X)

= E
(
X

Rf

)
+ cov(x∗,X)

und

pX = EP
(
X

Rf

)
+ b cov(X∗,X)



Dann beobachten wir weiter

b cov(X∗,X) = cov(x∗,X)

⇔ b cov(αx∗ + β1,X) = cov(x∗,X)

⇔ b cov(αx∗,X) = cov(x∗,X)

Also α = 1
b .

Also

X∗ =
1

b
x∗ + β1.

Wir müssen noch β bestimmen. Das geht noch einfacher: Kann man mit dem Ar-

gument aus dieser Bemer-

kung den Beweis über-

sichtlicher machen?

E(X∗) =
1

b

1

Rf
+ β

⇒ β = E(X∗)− 1

b

1

Rf

1.11.9 Take away:Wir betrachten ein arbitragefreies EPFMM

mit Auszahlungsmatrix A. Die Spalten von A seien linear

unabhängig und es gelte 1 ∈ Col(A). Wir betrachten das

innere Produkt ⟨X,Y⟩ = EP(XY) auf Col(A). Ferner sei

x∗ das eindeutig bestimmte Pro�lt mit

pX = E(x∗X) = E
(
X

Rf

)
+ cov(x∗,X),X ∈ Col(A).

Die Menge der varianzminimalen Portfolio bilden einen

zwei dimensionalen Unterraum vom Col(A) mit der Ba-

sis Liefert A(ATA)−1S̄0

Kandidaten für

Zustandspreise?



x∗ = A(⟨A,A⟩)−1S̄0 und 1.

1.12 Risiko und Rendite

Es ist ein Gemeinplatz, dass eine höhere erwartete Ren-

dite und ein höheres Risiko zusammen gehören. Diese (so

noch ungenaue) Aussage wird in diesem Abschnitt genau-

er betrachten und in einen zentralen Zusammenhang zum

stochastischen Diskontfaktor gebracht. Wir erhalten eine

berühmte β-Darstellung für die erwartete Rendite.

Diese β-Darstellung dokumentiert eine sehr wichtige Be-

obachtung. Es ist unzutre�end, dass eine höhere Varianz

eines Wertpapier per se mit einer höheren erwarteten Ren-

dite einher geht. Vielmehr geht ein höheres β mit einer

höheren Renditen einher. Alle Renditen in der Q-
Welt sind rf .

1.12.1 De�nition (Renditen): Es sei pX > 0. Dann de-

�nieren wir die Renditen:

Bruttorendite

RX =
X

pX

und Rendite

rX =
X− pX
pX

=
X

pX
− 1

Renditen entsprechen Zahlungspro�len mit Preis 1.



1.12.2 Bemerkung: Es sei m ein stochastischer Diskont-

faktor und R = X
pX

eine Bruttorendite.

i.) Es gilt

EP(R) =
1

EP(m)
− βR,mλm,

wobei

βR,m :=
cov(R,m)

VP(m)
,

λm :=
VP(m)

EP(m)
.

ii.) Wir betrachten die risikolose Anlageform mit konstan- Andere Autoren (Camp-

bell, Cochrane) verwen-

den bei λm ein anderes

Vorzeichen. Warum?
ter Rendite Rf . Dann gilt natürlich cov(m, Rf) = 0. Dann

folgt Rf = 1
EP(m)

(das haben wir schon mal hergeleitet).

Also gilt16

EP(R) = Rf − βR,mλm.

βR,m misst das bewerte Risiko des Wertpapiers. Das be-

wertete Risiko entsprecht der skalierten Kovarianz zum sto-

chastischen Diskontfaktor cov(R,m)

VP(m)
. λm heiÿt Marktpreis

des Risikos.

Die erwartete Wertpapierrendite EP(R) setzt sich aus drei

Teilen zusammen. Eine Zeitwertvergütung Rf und eine Ri-

16Gilt cov(m,R) > 0 bzw. äquivalent βR,m > 0, dann erzeugt R einen Hedging-
e�ekt. Der Preis des Finanzprodukt ist relativ hoch und die erwartete Rendite
relativ niedrig.



sikovergütung βR,mλm, wobei die Risikovergütung aus zwei

Komponenten besteht: Aus dem Preis des Risikos λm und

dem Risiko gemessen durch βR,m. Bemerkenswert ist, dass

das Risiko nicht allein von der Verteilung der Rendite R

(oder die Varianz von R) abhängig ist, sondern die Kovari-

anz zum stochastischen Diskontfaktor entscheidend ist. Für

die Risikoprämie ist also nicht das isoliert betrachtete Risi-

ko V(R) relevant, sondern das bewertete Risiko cov(R,m).

iii.) Wir bemerken noch, dass βR,m ein Regressionskoe�zi-

ent ist.17

iv.) Die Wertpapierrendite de�nieren wir durch r = R −
1 = S1−S0

S0
. Dann gilt

E(r)− rf = (−βR,m) · λm

v.) Wir hatten schon bemerkt, dass βR,m ein Regressions-

koe�zient ist. Das ist groÿartig, da es zur statistischen

Analyse einlädt. Allerdings ist zunächst nicht klar, wie wir

diese Beobachtung in einer empirische Regressionsanalyse

umsetzen sollen. Dazu benötigten wir Daten für m, die wir

typischerweise nicht direkt haben. Hier hilft der nächste

Satz, der das Hauptresultat dieses Abschnitt ist.

1.12.3 Satz: Wenn X∗ ein σ-minimales nicht konstantes

17Siehe Hansen [13, Seite 42].



Pro�l ist, dann gilt

EP(R)−Rf
1 =

cov(R,R∗)
V(R∗)

(
EP(R∗)−Rf

1

)
= βR,R∗

(
EP(R∗)−Rf

1

)

▶ βRX,RX∗ erfasst das bewertungsrelevante Risiko und

RX∗ −Rf
1 den Preis des Risikos.

1.12.4 Bemerkung: Es gibt also genau dann eine β Re-

präsentation, wenn die Rendite bezüglich derer die Reprä-

sentation gebildet wird, σ-minimal ist. Im CAPM ist X∗

das Marktpro�l undRX∗ die Marktrendite. Das CAPM gilt

also, wenn das Marktpro�l σ-minimal ist.



2 Mehrperiodenmodell

In diesem Kapitel werden dynamischeModelle entwickelt.

Während im vorhergehenden Kapitel lediglich eine Periode

betrachtet wurde, ist die Zahl der Perioden in diesem Ab-

schnitt eine beliebige natürliche ZahlN ∈ N. Dadurch kön-
nen wir zwei wichtige Aspekte des Finanzmarktes erfassen:

(1) Information und (2) Strategie.

▶ Einschlägige Quellen zu Binomialbaummodellen sind Shre-

ve [44], Jarrow und Chatterjea [27], Jarrow und Turnbull

[26], Hull [14] und natürlich die originäre Quelle Cox, Ross

& Rubinstein [6]. Über das Thema der Implementierung

kann man sich insbesondere bei Seydel (2017) [43, Ab-

schnitt 1.4] und Röman (2017) [39, Kapitel 2] informieren.

2.1 Binomialbaummodell

2.1.1 Ein-Perdioden-Modell

2.1.1 De�nition (Einperiodenbinomialbaummodell):

Das Einperiodenbinomialbaummodell (EPBBM) ist durch



die folgenden Angaben beschrieben:

� Anleger haben Zugang zu einer risikolosen Anlage-

form mit Zinssatz r > −1. Wir stellen uns diese An-

lagemöglichkeit alsGeldmarktkonto vor. Diese An-

lageform könnte auch die Anlage in nicht durch Zah-

lungsausfall bedrohte Anleihen mit einer Restlaufzeit

von einer Zeiteinheit sein. Den Betrag in Geldein-

heiten (GE), der auf dem Geldmarktkonto angelegt

wird, bezeichnen wir mit M1 ∈ R (M für Money).

� In t = 1 tritt einer von zwei Zuständen ein: Ω =

{ωH , ωT}. Es gilt 0 < P({ωH}) = p < 1. p heiÿt Er-

folgswahrscheinlichkeit und H bzw. T steht für hoch

respektive tief. Wir wählen als σ-Algebra die Potenz-

menge F = P(Ω). Das Risiko wird durch den Wahr-

scheinlichkeitsraum (Ω,F ,P) erfasst.

� Anleger können in ein riskantes Wertpapier investie-

ren, das in t = 0 für S0 > 0 gehandelt wird und für

dessen t = 1 Preis

0 < S1(ωH) = uS0 bzw.

0 < S1(ωT ) = dS0

gilt. Ferner unterstellen wir 0 < d < u.

d steht für down und u für up. Wir setzen nicht not-

wendigerweise d < 1 bzw. u > 1 voraus, so dass

�down� bzw. �up� strenggenommen missverständlich



ist. Für die Anzahl der gekauften Wertpapiere

verwenden wir ∆1.

Schematische Darstellung des EPBBM

S0

S1(ωT )

ω
T

1− p

S1(ωH)

ωH
p

2.1.2 De�nition: Eine Anlagestrategie h = (M1,∆1)
T

des EPBBM heiÿt Arbitrage, wenn1

i.) V h
0 = M1 + ∆1S0 = 0, d.h. die Anscha�ungskosten

V h
0 der Anlagestrategie (M1,∆1)

T betragen 0.

ii.) V h
1 = M1(1 + r) + ∆1S1(ω) ≥ 0 für ω = {ωH , ωT}

und

iii.) V h
1 =M1(1 + r) + ∆1S1(ω) > 0 für ω = ωH oder für

ω = ωT .

Das EPBBM heiÿt arbitragefrei, wenn es keine Arbitrage

gibt.
1Die (Zeit-)Indizes von M und ∆ sind zunächst merkwürdig, denn über diese
Werte wird doch in 0 entschieden!? Wir wählen die Indizes bei Handelss-

trategie mit einer zeitlichen Verschiebung, da wir dann später bequem das
Konzept predictable einführen können. Die Variablen M1 und ∆1 beziehen
sich auf den Zeitraum von 0 bis 1 (Halteperiode).



2.1.3 Bemerkung: Gilt Arbitragefreiheit und ist M1 +

∆1S0 = 0, dann gilt M1(1 + r) + ∆1S1(ω) = 0 für ω =

ωH , ωT oder mindestens einer der WerteM1(1+r)+∆1S1(ω)

ist negativ.

In der Tat: Angenommen M1(1 + r) + ∆1S1(ω) ̸= 0. Wäre

M1(1+r)+∆1S1(ω) ≥ 0 für beide ω, dann wäre (M1,∆1)
T

eine Arbitrage.M1(1+r)+∆1S1(ω) ≤ 0 kann aber ebenfalls

nicht gelten, dann das wäre (−M1,−∆1)
T eine Arbitrage.

Also muss es ein ω mit M1(1 + r) + ∆1S1(ω) < 0 und ein

ω mit M1(1 + r) + ∆1S1(ω) > 0 gelten.

2.1.4 Bemerkung: Wie für den Fall des EPFMM ist es

auch hier zweckmäÿig, die Auszahlungsmatrix der Aus-

gangsanlagemöglichkeiten zu de�nieren:

A =

(
1 + r S1(ωH)

1 + r S1(ωT )

)
=

(
1 + r uS0

1 + r dS0

)
.

In der ersten Zeile stehen die Auszahlungen für ω = ωH

und in der zweiten Zeile stehen die Auszahlungen für ω =

ωT . Die Matrix hat wegen d < u den Rang 2 und ist somit

invertierbar. Die Auszahlung eines Portfolio R2 ∋ h1 =

(M1,∆1)
T ist Vh1

1 = Ah1. Da die Matrix A invertierbar

ist, kann jedes 2-dimensionale Auszahlungspro�l X ∈ R2

mit h1 = A−1X eindeutig repliziert werden.

2.1.5 Satz: Das EPBBM ist (wegen d ̸= u) vollstän-

dig. Es gilt sogar folgendes: Für jedes Auszahlungspro�l



V1 = (V1(ωH), V1(ωT ))
T existiert eine eindeutig bestimm-

te Replikationsstrategie h1 = (M1,∆1)
T .

2.1.6 Satz: Im EPBBM gilt genau dann Arbitragefreiheit,

wenn d < 1 + r < u gilt.2

2.1.7 Bemerkung:Die Intuition für den letzten Satz liegt

auf der Hand. Wäre beispielsweise 1+ r ≤ d < u, dann ist

die Geldleihe so günstig, dass ein Investor selbst für ω = ωT

in der Lage ist, aus dem Kursgewinn der riskanten Anla-

ge, etwaige Schulden zu tilgen. Unter solchen Umständen

kann ein Investor mit geliehenen Geld Wertpapiere kaufen

und einen sicheren nicht-negativen von Null verschiedenen

Gewinn realisieren.

2.1.8 De�niton: EinWahrscheinlichkeitsmaÿQ auf (Ω,F)
heiÿt Risikoneutralwahrscheinlichkeitsmaÿ, wenn

i.) q := Q({ωH}) > 0,Q({ωT}) > 0,

ii.) Der aktuelle Preis des Basiswertpapiers ergibt sich

gemäÿ Risikoneutralbewertungsprinzip:

S0 = EQ
(

S1

1 + r

)
.

2.1.9 Satz: Im EPBBM mit d < 1 + r < u ist das Risi-

2Beachte, dass die Ungleichung d > 0 als Generalvoraussetzung weiter gelten
soll.



koneutralwahrscheinlichkeitsmaÿ durch

Q({H}) = q =
1 + r − d
u− d

gegeben.

2.1.10 Bemerkung: Wir notieren die folgenden Äquiva-

lenzen:

0 < q < 1⇔ 0 < d < 1 + r < u⇔ Arbitragefreiheit.

2.1.11 Bemerkung:Wenn man die Geldmarktverzinsung

anstatt in der Form 1 + r in der Form er angibt, dann ist

die Risikoneutralwahrscheinlichkeit gleich

q =
er − d
u− d

.

2.1.12 Bemerkung (Bewertung durch Replikation):

Da ein arbitragefreies EPBBM vollständig ist, können wir

ein beliebiges Zahlungspro�l V1 = (V1(ωH), V1(ωT ))
T auch

mittels Replikation bewerten. Dazu ermitteln wir die repli-

zierende Strategie. Die Anscha�ungskosten der replizieren-

den Strategie entsprechen dann dem fairen Preis.

2.1.13 Satz (Risikoneutralbewertungsprinzip): Ge-

geben sei ein arbitragefreies EPBBMmit 0 < d < 1+r < u

und ein beliebiges Zahlungspro�l V1 = (V1(ωH), V1(ωT ))
T .



In t = 0 ist der faire Preis dieses Zahlungspro�ls

V0 =
1

1 + r
(qV1(ωH) + (1− q)V1(ωT ))

=
1

1 + r
EQ(V1).

Für alle Zahlungspro�le gilt demnach das Risikoneutral-

bewertungsprinzip.

2.1.14 Bemerkung: Wir erhalten also das bemerkens-

werte � und uns schon geläu�ge � Resultat, dass die An-

scha�ungskosten des replizierenden Portfolios dem diskon-

tierten Erwartungswert der Auszahlung entsprechen, wo-

bei die Diskontierung mit dem risikolosen Zins vorgenom-

men und der Erwartungswert mit der Risikoneutralwahr-

scheinlichkeit berechnet wird. Wir bemerken also:Das Ri-

sikoneutralbewertungsprinzip � das gemäÿ De�ni-

tion für die Basiswerte gilt � überträgt sich auf alle

Anlagestrategien. Wegen der Vollständigkeit über-

trägt sich das Risikoneutralbewertungsprinzip (so-

gar) auf alle bedingten Auszahlungen.

▶ Das EPBBM ist eine andere Formulierung des EPFMM

mitK = 2. Das EPBBMwurde erläutert, weil dann die No-

tation des Binomialbaummodells mit N Perioden leichter

erfasst werden kann. ▶ Das EPBMM repräsentiert einen N ist vorne die Anzahl der

riskanten WP ......

Zweig des Binomialbaums .....



2.1.2 Binomialbaummodell: 2 Perdioden

dann nT Perdioden

2.1.15 De�nition: Das Zweiperiodenbinomialbaum-

modell (ZPBBM) ist durch die folgenden Angaben be-

schrieben:

� Es gibt zwei Perioden und drei Zeitpunkte t = 0, 1, 2

(T = {0, 1, 2}).

� Anleger können für den Zinssatz r > −1 Geld sicher

anlegen bzw. Kredite aufnehmen. Dieser Zinssatz ist

in beiden Perioden gleich r.

� Das Risiko wird durch den folgenden Wahrscheinlich-

keitsraum (Ω2,F ,P) erfasst:

Ω2 = {(ω1, ω2) |ω1, ω2 ∈ {ωH , ωT}}

= Ω1 × Ω1,Ω1 = {ωH , ωT}

F = P(Ω2),

und

P({(ωH , ωH)}) = p2,

P({(ωH , ωT )}) = P({(ωT , ωH)}) = p(1− p),

P({(ωT , ωT )}) = (1− p)2

Für das ZPBBM ist der Wahrscheinlichkeitsraum der

2-fache Produktwahrscheinlichkeitsraum von (Ω1,P1),



wobei (Ω1,P1) der Wahrscheinlichkeitsraum des EPBMM

ist. Der Wahrscheinlichkeitsraum ist also ein unab-

hängig wiederholtes Bernoulliexperiment mit 2 Wie-

derholungen und der Erfolgswahrscheinlichkeit p.

� Anleger können in ein riskantes Wertpapier investie-

ren, das in t = 0 für S0 > 0 gehandelt wird. Der

Preis des Wertpapiers in t = 1 ist die Zufallsvariable

S1 = S1(ω1, ω2) mit3

S1(ωT ) = S1(ωT , ω2) = dS0, ω2 ∈ {ωH , ωT}

S1(ωH) = S1(ωH , ω2) = uS0, ω2 ∈ {ωH , ωT}

Der Kurs in t = 1 ist entweder S1(ωH) = uS0 oder

S1(ωT ) = dS0; bei S1 lassen wir die für den Wert

von S1 irrelevante zweite Dimension gelegentlich weg.

Dass der Kurs in t nicht vom Wert von ω2 abhängig

ist, ist selbstverständlich: Der Kurs in t = 1 nimmt

naturgemäÿ keine Zustände der nächsten Periode vor-

weg; die sind noch nicht eingetreten.

In t = 2 ist der Preis des Wertpapiers die Zufallsva-

3Beachte, dass formal S1(ωT ) und S1(ωH) nicht de�niert sind, denn die Zufalls-
variable S1 ist gemäÿ De�nition einer Zufallsvariable von zwei Argumenten
abhängig. S1 hängt aber nicht dabei ab, welchen Wert ω2 annimmt. Deshalb
ist es üblich, ω2 wegzulassen.



riable S2 = S2(ω1, ω2) mit

S2(ωH , ωH) = u2S0

S2(ωH , ωT ) = S2(ωT , ωH) = udS0

S2(ωT , ωT ) = d2S0

Ferner nehmen wir an, dass 0 < d < u gilt.

� Anleger können ihr Portfolio nicht nur in t = 0 wäh-

len, sondern zudem in t = 1 anpassen; und zwar

je nach Information über die Kursentwicklung. Mit

(M1,∆1)
T ∈ R2 bezeichnen wir das t = 0 Port-

folio. Anleger beobachten die Preisentwicklung des

Wertpapiers. Sie können dementsprechend ihr t = 1

Portfolio in Abhängigkeit der ersten Dimension ω1

von (ω1, ω2)
T wählen; ω2 kennen die Anleger noch

nicht! Für den Fall, dass der Preis zunächst steigt

� also ω1 = ωH ist �, verwenden wir die Notation

(M2(ωH),∆2(ωH))
T ; und (M2(ωT ),∆2(ωT ))

T wenn der

Preis zunächst fällt. Die drei Vektoren (6 Zahlen)

(M1,∆1)
T , (M2(ωH),∆2(ωH))

T , (M2(ωT ),∆2(ωT ))
T

heiÿen Anlagestrategie.

Der Wert V0 = ∆1S0 +M1 erfasst die Anfangskos-

ten bzw. Anscha�ungskosten bzw. Anfangs-

wert der Strategie � die in t = 0 anfallen. V2(ω1, ω2) =

(1+r)M2(ω1)+∆2(ω1)S2(ω1, ω2) erfasst dieAuszah-



lungen der Strategie, die sich in t = 2 ergeben.

� Das folgende Diagramm zeigt die

Schematische Darstellung des ZPBBM

S0

S1(ωT )

S2(ωT , ωT ) = d2S0

ωT
1− p

S2(ωT , ωH) = duS0ωH
p

ω
T

1− p

S1(ωH)

S2(ωH , ωT ) = udS0

ωT
1− p

S2(ωH , ωH) = u2S0ωH
p

ωH
p

2.1.16 De�niton: Eine Anlagestrategie des ZPBBM

(M1,∆1)
T , (M2(ωH),∆2(ωH))

T , (M2(ωT ),∆2(ωT ))
T

heiÿt selbst�nanzierend, wenn für alle ω ∈ {ωH , ωT}

M1 · (1 + r) + ∆1 · S1(ω) =M2(ω) + ∆2(ω) · S1(ω)

gilt.

M1 · (1 + r) + ∆1 · S1(ω) ist der Wert in t = 1 des in t = 0

angescha�ten Portfolios und M2(ω) + ∆2(ω) · S1(ω) sind

die Kosten/Wert des Portfolio, wie es in t = 1 angescha�t

wird. In t = 1 wird demnach weder Geld entnommen noch

muss Geld ergänzt werden. Die Umschichtung von M1,∆1

auf M2,∆2 �nanziert sich (in diesen Sinn) selbst.



2.1.17 De�niton:Das ZPBBM heiÿt arbitragefrei, wenn

es keine selbst�nanzierende Anlagestrategie mit Anschaf-

fungskosten V0 = 0 gibt, so dass die Auszahlung 0 ̸= V2 ≥ 0

nicht-negativ aber von Null verschieden ist.

2.1.18 Bemerkung: Wenn es eine Anlagestrategie mit

V0 = 0 und 0 ̸= V1 ≥ 0 gibt, dann gibt es eine Arbi-

tragemöglichkeit.

▶ Wie schon vorher wollen wir für den Fall der Arbi-

tragefreiheit Risikoneutralwahrscheinlichkeiten zur Bewer-

tung nutzen. Wir haben die P-Welt als zweifache Wieder-

holung eines unabhängigen Bernoulli-Experiments mit Er-

folgswahrscheinlichkeit p modelliert. Um in die Q-Welt zu

gelangen, müssen wir nur die Erfolgswahrscheinlichkeit ge-

eignet wählen/�nden.

2.1.19 De�niton: EinWahrscheinlichkeitsmaÿQ auf (Ω2,P(Ω2))

heiÿtRisikoneutralwahrscheinlichkeitsmaÿ des ZPBBM,

wenn

i.) Q ist das Wahrscheinlichkeitsmaÿ der zweifachen un-

abhängigen Wiederholung des Bernoulli Experiments

mit Ergebnisse Ω = {ωH , ωT} und Erfolgswahrschein-
lichkeit q > 0.



ii.) Es gilt

S0 = EQ
(

S1

1 + r

)
= q

S1(ωH)

1 + r
+ (1− q) S1(ωT )

1 + r
.

und

S1(ωH) = EQ
1

(
S2

1 + r

)
(ωH)

= Q(ω2 = ωH|ω1 = ωH)
S2(ωH , ωH)

1 + r

+Q(ω2 = T |ω1 = ωH)
S2(ωH , ωT )

1 + r

= q
S2(ωH , ωH)

1 + r
+ (1− q)S2(ωH , ωT )

1 + r
,

S1(T ) = EQ
1

(
S2

1 + r

)
(ωT )

= Q(ω2 = ωH|ω1 = ωT )
S2(ωT , ωH)

1 + r

+Q(ω2 = T |ω1 = ωT )
S2(ωT , ωT )

1 + r

= q
S2(ωT , ωH)

1 + r
+ (1− q)S2(ωT , ωT )

1 + r
,

=
qS2(ωT , ωH) + (1− q)S2(ωT , ωH)

1 + r

wobei wir wegen der unterstellten Unabhängigkeit

Q(ω2 = ωH|ω1 = ωT ) = Q(ω2 = ωH|ω1 = ωH) = q

und Q(ω2 = ωT |ω1 = ωT ) = Q(ω2 = ωT |ω1 = ωH) =

1− q verwenden können.

Wir beachten, dass S1(H) i.A. nicht gleich EQ
(

S2
1+r

)
ist;

sondern gleich EQ
1

(
S2
1+r

)
(ωH). Wir bilden keinen (unbe-



dingten) Erwartungswert E, sondern einen bedingten E1!

Ein bedingter Erwartungswert ist nicht einfach eine Zahl,

sondern eine Zufallsvariable: E1 hängt von ω ab!

2.1.20 Bemerkung: In der obigen De�nitionen folgen die

beiden Gleichungen

S1(ωH) = EQ
1

(
S2

1 + r

)
(ωH)

S1(ωT ) = EQ
1

(
S2

1 + r

)
(ωT )

für S1(ωH) und S1(ωT ) für den Zeitpunkt 1 aus der Glei-

chung für S0.

In der Tat: Aus

S0 = EQ
(

S1

1 + r

)
= q

uS0

1 + r
+ (1− q) dS0

1 + r
.

folgt

S1(H) = uS0 = q
u2S0

1 + r
+ (1− q) udS0

1 + r

= q
S2(ωH , ωH)

1 + r
+ (1− q)S2(ωH , ωT )

1 + r

= EQ
1

(
S2

1 + r

)
(ωH)



und analog

S1(T ) = dS0 = q
duS0

1 + r
+ (1− q) d

2S0

1 + r

= q
S2(ωT , ωH)

1 + r
+ (1− q)S2(ωT , ωT )

1 + r

= EQ
1

(
S2

1 + r

)
(ωT )

Man könnte sie also auch weglassen. In anderen Modellen

benötigt man in der De�nition entsprechende Gleichungen

wie

S1(ωH) = EQ
1

(
S2

1 + r

)
(ωH)

S1(ωT ) = EQ
1

(
S2

1 + r

)
(ωT )

für jede Periode; deshalb haben wir die Gleichungen ange-

geben.

2.1.21 Satz: Wenn d < 1 + r < u gilt, dann ist der

durch das ZPBBM modellierte Finanzmarkt arbitragefrei

und vollständig. Das Risikoneutralwahrscheinlichkeitsmaÿ

ergibt sich, wenn man (wie im EPBBM) die Erfolgswahr-

scheinlichkeit

q =
1 + r − d
u− d

.

wählt.

Jedes Pro�l V2 = V2(ω1, ω2) können wir gemäÿ des Risiko-



neutralbewertungsprinzips bewerten:

pV2 = EQ
(

V2
(1 + r)2

)
bzw.

pV2 = V0 =
EQ(V1)

1 + r
,

V1 =
EQ
1 (V2)

1 + r

wobei wir beachten müssen, dass V1 bzw. EQ
1 Zufallsvaria-

blen sind (denn die bedingte Erwartung EQ
1 ist eine Zu-

fallsvariable).

2.1.22 Bemerkung: In einem ZPBBM gelten die Risiko-

neutralbewertungsformeln

V1(ωH) =
q V2(ωH , ωH) + (1− q)V2(ωH , ωT )

1 + r
,

V1(ωT ) =
q V2(ωT , ωH) + (1− q)V2(ωT , ωT )

1 + r

und

V0 =
q V1(ωH) + (1− q)V1(ωT )

1 + r

oder knapper

V0 =
EQ
0 (V1)

1 + r
,

V1 =
EQ
1 (V2)

1 + r

In der Tat wurde die im obigen Beweis mit abgeleitet.



▶ Wir beschäftigen uns jetzt und später nochmal mit dem

nT -Periodenbinomialbaummodell, deshalb geben wir jetzt

keine Beweise für die folgenden Behauptungen an. In die-

sen Abschnitt machen wir einen kurzen Aus�ug in die Im-

plementierung (in R). Für die Erläuterung der mathema-

tischen Grundlagen verweisen wir auf den nächsten Ab-

schnitt.

2.1.23 De�nition (nT -Periodenbinomialbaummodell):

Das nT -Periodenbinomialbaummodell (BBM) ist durch die

folgenden Angaben beschrieben:

� Es gibt nT Perioden der Länge ∆t und nT + 1 Zeit-

punkte ti = i∆t, i = 0, ..., nT . Jetzt ist T = {t0, t1, ..., tnT}

� Anleger können Geld sicher anlegen bzw. Kredite auf-

nehmen. Die Verzinsung ist in allen Perioden gleich

r∆t, r > −1, wobei wir nun die Verzinsung in der

Form er∆t angeben (stetige Aufzinsung). Wenn ein

Anleger zum Zeitpunkt ti den Betrag Mi in dieser

Anlageform anlegt, dann ist die Auszahlung in ti+1

sicher er∆tMi.

� Die Unsicherheit wird durch die nT -fache unabhän-

gige Wiederholung eines Bernoulli-Experimentes mit

Ω = {ωH , ωT} und Erfolgswahrscheinlichkeit 0 < p <

1 erfasst (ωH bezeichnet hier den Bernoulli-Erfolg).

Der Ergebnisraum ist also die Menge der Pfade der



Länge nT aus ωH 's und ωT 's:

ΩnT = {(ω1, ω2, ..., ωnT ) |ωi ∈ {ωH , ωT}}.

ΩnT hat 2nT Pfade.

� Anleger können in ein riskantes Wertpapier investie-

ren, das in t = t0 = 0 für S0 > 0 gehandelt wird. Der

Preis in t > 0 dieser riskanten Anlageform ist eine

Zufallsvariable. Der Preis Si, i = 1, ..., nT des riskan-

ten Wertpapiers im Zeitpunkt ti, i = 1, ..., nT ergibt

sich aus den ersten i Bernoulli-Ergebnissen:

Si((ω1, ω2, ..., ωi)) = S0u
♯H(ω1,ω2,...,ωi)d♯T (ω1,ω2,...,ωi),

wobei ♯H(ω1, ω2, ..., ωi) gleich der Anzahl der ωH 's

in der Sequenz (ω1, ω2, ..., ωi) und ♯T (ω1, ω2, ..., ωi)

gleich der Anzahl der ωT 's in der Sequenz (ω1, ω2, ..., ωi)

bezeichnet. Der Preis des Basiswertes ist also nicht

davon abhängig, wie ein bestimmter Knoten des Baums

erreicht wurde. Lediglich die Zahl der ωH 's und ωT 's

ist entscheidend. Ferner unterstellen wir 0 < d < u.

� Anleger können zu den Zeitpunkten t = ti, i = 0, ..., nT−
1 Portfolio (Mi+1,∆i+1) ∈ R2 wählen. Die Anleger

beobachten sukzessive die Ergebnisse der Bernoulli-

Experimente. Im Zeitpunkt t = ti haben sie also die

ersten i Ergebnisse (ω1, ..., ωi) beobachtet. Ihre An-

lagestrategie in Zeitpunkt ti ist also i.A. eine Funk-

tion der Realisierung (ω1, ..., ωi), d.h. (Mi+1,∆i+1) =



(Mi+1(ω1, ..., ωi),∆i+1(ω1, ..., ωi)). Eine Sequenz (Mi+1,∆i+1), i =

0, ..., nT−1 nennen wirHandelsstrategie des NPBBM.

▶ Beachte: Mi+1,∆i+1 werden in ti und nicht in ti+1 ge-

wählt. Den Grund für die Indexverschiebung haben wir in

der Fuÿnote in (2.1.2) angedeutet.

2.1.24 De�nition: 1.) Eine Handelsstratgie (Mi,∆i), i =

1, ..., N heiÿt selbst�nanzierend, wenn für i = 1, ..., nT−
1

Mie
r∆t + Si∆i ≡Mi+1 + Si∆i+1.

Mie
r∆t+Si∆i ist der Wert in t = t−i des ti−1 angescha�ten

Portfolios undMi+1+Si∆i+1 ist der Wert in t = ti des in t
+
i

angescha�ten Portfolios. Die Notation t−i bedeutet ....Die

Notation t+i bedeutet ....

2.) Eine selbst�nanzierende Handelsstratgie heiÿt Arbi-

trage, wenn

i.) M1 +∆1S0 = 0

ii.) 0 ̸=MnT e
r∆t +∆nTSnT ≥ 0.

3.) Das NPBBM heiÿt vollständig, wenn es für alle X :

ΩnT → R eine Handelsstrategie mit

MnT e
r∆t +∆nTSnT ≡ X

gibt.



2.1.25 Bemerkung: i.) Der Preis SnT nimmt nach nT

Perioden einen von nT + 1 unterschiedlichen Werte an:

S0u
idnT−i, i = 0, 1, 2, ..., nT . Es gilt

P(SnT = S0u
idnT−i) =

(
nT
i

)
pi(1− p)nT−i,

so dass der Wertpapierpreis im Zeitpunkt nT ist binomial

verteilt.

ii.) Der Preis des Wertpapiers hängt nur von der Anzahl

der ωH 's und ωT 's ab, jedoch nicht von der Reihenfolge der

ωH 's bzw. ωT 's. Dieser Wertpapierpreis ist pfadunabhän-

gig.

iii.) Die bedingten Auszahlungen X : ΩnT → R sind unter

Umständen pfadabhängig.

2.1.26 De�nition: EinWahrscheinlichkeitsmaÿQ auf (ΩnT ,P(ΩnT ))
heiÿt Risikoneutralwahrscheinlichkeitsmaÿ, wenn

i.) Q ist das Wahrscheinlichkeitsmaÿ der nT -fachen un-

abhängigen Wiederholung des Bernoulli Experiments mit

den Ergebnissen {ωH , ωT} und der Erfolgswahrscheinlich-

keit q > 0.

ii.) Es gilt

S0 = q e−r∆tS1(ωH) + (1− q) e−r∆tS1(ωT )



und

Si(ω1, ω2, ..., ωi) = Q(ωi+1 = ωH |ω1,...,i = (ω1, ω2, ..., ωi)) · e−r∆t Si+1(ω1, ω2, ..., ωi, ωH)

+Q(ωi+1 = ωT |ω1,...,i = (ω1, ω2, ..., ωi)) · e−r∆t Si+1(ω1, ω2, ..., ωi, ωT )

= q e−r∆t Si+1(ω1, ω2, ..., ωi, ωH)

+ (1− q) e−r∆t Si+1(ω1, ω2, ..., ωi, ωT ).

Die beiden Gleichungen kann man auch kurz so angeben:

Si = EQ
i

(
e−r∆tSi+1

)
, i = 0, ..., nT − 1.

2.1.27 Satz: Für das nT -Periodenbinomialbaummodell (NPBBM)

mit d < er∆t < u gilt:

1. Der durch dieses NPBBM modellierte Finanzmarkt

ist arbitragefrei.

2. Der durch dieses NPBBM modellierte Finanzmarkt

ist vollständig.

3. Mit q = er∆t−d
u−d als Erfolgswahrscheinlichkeit erhält

man das Risikoneutralwahrscheinlichkeitsmaÿ.

4. Für jede Auszahlung VnT = VnT (ω1, ..., ωnT ) ∈ R2nT

in t = tnt ergibt sich der faire t = 0 Preis V0 als

V0 = e−r∆t nTEQ(VnT ).

Die Bewertungsmethode gilt also auch für pfadab-

hängige Auszahlungen!

5. Den fairen t = 0 Preis V0 kann man rekursiv bestim-



men:

Vi(ω1, ..., ωi) = e−r∆t (qVi+1(ω1, ..., ωi, ωH) + (1− q)Vi+1(ω1, ..., ωi, ωT ))

verwendet. Diese Gleichung kann man auch in der

Form

Vi = e−r∆tEQ
i Vi+1

angeben.

2.1.28 Bemerkung:Wir bemerken, dass die bedingte Aus-

zahlung pfadabhängig sein kann. Der Wert des Derivates

hängt also nicht nur vom Wert SnT der Aktie am Lauf-

zeitende ab, sondern auch davon, wie dieser Wert erreicht

wurde.

2.1.29 Bemerkung (Anpassung): Das Binomialbaum-

modell hat bezogen auf die Wertpapierbewertung (nur!)

drei geeignet zu wählende Parameter: q, u und d. Diese Pa-

rameter können so gewählt werden, dass die Bewertungs-

methode praktisch genutzt werden kann. Dazu wird eine

sogenannte Anpassung bzw. Kalibrierung vorgenommen.

Maÿstab sind empirische Kennzi�ern sowie das Risi-

koneutralbewertungsprinzip. Durch die folgende Para-

meterwahl erhält man eine Anpassung an die empirisch zu

ermittelnde Varianz der Wertpapierpreisentwicklung (vgl.



insb. Seydel [41, S. 19]):

β =
1

2
(e−r∆t + e(r+σ

2)∆t), (2.1)

u = β +
√
β2 − 1, (2.2)

d = 1/u, (2.3)

q =
er∆t − d
u− d

. (2.4)

Diese Gleichungen erhält man, wenn man folgendes Glei-

chungssystem löst:

er∆t = qu + (1− q)d, (2.5)

qu2 + (1− q)d2 − (er∆t)2 = e2r∆t(eσ
2∆t − 1), (2.6)

ud = 1. (2.7)

Mit der ersten Gleichung wird die erwartete Rendite des

Binomialbaummodells gemäÿ der Risikoneutralbewertung

kalibriert. Die zweite Gleichung sorgt dafür, dass die Vari-

anz des Binomialbaummodells an die Varianz der Wertpa-

pierkursentwicklung angepasst wird. Die rechte Seite der

zweiten Gleichung entspricht dabei der Varianz einer log

Normalverteilten Zufallsvariable mit Erwartungswert r∆t.

Die dritte Gleichung impliziert, dass der Binomialbaum ei-

ne vertikale Achse hat. Wählt man eine hinreichend groÿe

Anzahl von Schritten, dann werden die Ergebnisse des Bi-

nomialverfahren mit dem der Formel von Black und Scholes

gut übereinstimmen (die Formel wird unten hergeleitet).

Es gibt zu der oben angegeben Kalibrierungen Alternati-

ven, die beispielsweise in Jarrow und Chatterjea [27, S. 477]



und Hull [14] diskutiert werden.

2.1.30 Bemerkung: Das folgende R Skript zeigt exem-

plarisch, wie einfach die Implementierung in R des Bino-

mialbaummodells ist.

K = 6

S0 = 6

r = 0.04

sigma = 0.3

T = 1

N = 1200

dt = T/N

beta = 0.5*( exp( -r*dt ) + exp( (r+sigma^2)*dt ))

u = beta + sqrt( beta^2 - 1 )

d = 1/u

q = ( exp( r*dt )- d )/( u - d )

S = vector(length=N+1)

V = vector(length=N+1)

S = S0*(u^(0:(N)))*(d^((N):0))

V = K - S

V[V<=0] = 0

qc = 1 - q

for (i in (N:1)) {

V = q*V[2:(i+1)] + qc*V[1:i]

}

dis = exp(-r*T)



V = dis*V

BlackScholesExplicitFormula = function(S0){

d1 = ( log(S0/K) +

( r + (sigma^2)/2 )*T )/(sigma*sqrt(T))

d2 = ( log(S0/K) +

( r - (sigma^2)/2 )*T )/(sigma*sqrt(T))

# d2 = d1 - sigma*sqrt(T)

N1 = pnorm(-d1,mean = 0,sd = 1, lower.tail = TRUE)

N2 = pnorm(-d2,mean = 0,sd = 1, lower.tail = TRUE)

V = K*exp(-r*T)*N2 - S0*N1

V

}

Wir erhalten die Ergebnisse

> V

[1] 0.5898126

> BlackScholesExplicitFormula(S0)

[1] 0.5899325

> BlackScholesExplicitFormula(S0) - V

[1] 0.0001199544

Die Ausgabe zeigt auch den Wert der europäische Verkaufs-

option gemäÿ Black-Scholes-Merton Modell.

▶ Die folgenden beiden Sätze mit Beweis �ndet man ins-

besondere in Günther und Jüngel [12, Abschnitt 3.1 und

Abschnitt 3.3]



2.1.31 Satz: Im BBM gilt für den Preis C0 einer europäi-

sche Kaufoption mit Ausübungskurs K und der Fälligkeit

nach nT Perioden:

C0 = S0Φ(m, p
′)−Ke−r∆tNΦ(m, q) (2.8)

p′ = que−r∆t (2.9)

Φ(m, p) =

nT∑
k=m

(
nT
k

)
pk(1− p)nT−k (2.10)

m = min{0 ≤ k ≤ nT : ukdnT−kS0 −K ≥ 0}
(2.11)

Diese Formal heiÿt diskrete Formel von Black und

Scholes.

2.1.32 Satz (Formel von Black und Scholes): Es sei

T die Restlaufzeit in Jahren einer europäische Kaufoption.

Wir wählen das NPBBMmit u = exp(σ
√
∆t), d = 1/u und

der Periodenlänge ∆t = T
nT

in Jahren. Dann gilt für den

Preis CnT
0 einer europäische Kaufoption mit Ausübungs-

kurs K und Restlaufzeit T :

lim
nT→∞

C
nT
0 = S0Φ(d1)−Ke−rTΦ(d2), (2.12)

wobei

d1 =
ln(S/K) + (r + σ2

2 )T

σ
√
T

,

d2 =
ln(S/K) + (r − σ2

2 )T

σ
√
T



und Φ die Verteilungsfunktion der Standardnormalvertei-

lung ist. Diese Fermal heiÿt Formel von Black und Scho-

les.

Beweis: Vgl. Günther und Jüngel [12, Abschnitt 3.3]

2.1.33 Fallstudie: Binomialbaum für amerikanische

Optionen Beispiel aus Hull replizieren. Vgl. Hull [15,

Seite 565]

2.1.34 Fallstudie: Delta-Hedging. Vgl Hull [15, Seite

570] Seydel [42, Seite 26]

2.1.35 Fallstudie: Alternative Spezi�kationen. Vgl.

Romän [39, Abschnitt 2.7], Seydel [42, Seite 26], Seydel

[43]

2.2 Das Binomialbaum mit Prozessen

Man kann dasN -Perioden Binomialbaummodell ausschlieÿ-

lich auf Basis des Modellierungsansatzes gemäÿ 2.1 einfüh-

ren. In der Tat ist das der übliche und u.U. auch zweck-

mäÿige Weg. Für das spätere Studium (insbesondere für

die zeitstetigen Modelle) ist es aber zweckmäÿiger, sich

der Terminologie der stochastischen Prozesse und

der (erzeugten) Filtrationen auf einem allgemeinenWahr-

scheinlichkeitsraum (Ω,A,P) zu bedienen. Wir können so



relativ abstrakte Konzepte in einem übersichtlichen und

bekannten �nanzwirtschaftlichen Kontext einführen. Diese

Konzepte werden insbesondere für allgemeinere Mehrperi-

odenmodelle und für zeit-stetige Modelle benötigt.

Trotz der erheblichen Redundanz wird das Binomialbaum-

modell jetzt noch mal in einem allgemeineren Kontext ein-

geführt. Wir benötigen einige Konzepte der Stochastik.

2.2.1 Satz: Es sei (Ω,F ,P) ein Wahrscheinlichkeitsraum.

Ferner sei Z = {Z1, ..., Zn}, Zi ∈ F eine Zerlegung von Ω,

d.h.

Ω =

n⊎
i=1

Zi .

Dann gilt

σ(Z) =

⊎
j∈J

Zj | J ⊂ {1, ..., n}

 .

σ(Z) ist die kleinste σ-Algebra, die die Mengen Z1, ..., Zn

der Zerlegung Z enthält. σ(Z) besteht aus den möglichen

Vereinigungen aus den Menge Z1, ..., Zn. σ(Z) heiÿt die

von der Zerlegung Z erzeugte σ-Algebra.

▶ Die Zerlegung repräsentiert eine Fallunterscheidung: Ei-

nes der Ereignisse Zi tritt ein bzw. ist eingetreten. Für

einen Wahrscheinlichkeitsraum benötigen wir eine σ-

Algebra. Die zur Zerlegung Z passende σ-Algebra ist σ(Z).



2.2.2 De�nition: Es sei (Ω,F ,P) einWahrscheinlichkeits-

raum. Eine Abbildung ξ : Ω → R heiÿt F -messbar, falls

ξ−1(B) ∈ F für jede Borelmenge B gilt. In der Tat muss

ξ−1(I) ∈ F nur für alle Loravalle (links o�ene rechts abge-

schlossene) oder Intervalle I gelten (vgl. Jäger-Ambrozewicz

[24, ......]).

Wir wollen regelmäÿig von der Wahrscheinlichkeit sprechen

(können), dass die Zufallsvariable ξ einen Wert in einem

Intervall I annimmt (z.B.: der Verlust ist kleiner gleich 30

Millionen Euro, die Rendite liegt im Intervall von -0.01 bis

0.01). Das geht aber nur dann, wenn F := ξ−1(I) ∈ F gilt,

denn nur für Mengen F ∈ F ist P(F ) de�niert.

Die Wahrscheinlichkeit, dass ξ einen Wert in I annimmt,

ist dann

P(ξ ∈ I) := Pξ(I) := P(ξ−1(I)).

Das Maÿ Pξ auf (R,B) heiÿt die Verteilung der Zufalls-
variable ξ.

Die Voraussetzung der Messbarkeit ist in stochastischen

Zusammenhängen also eine ganz natürliche und unver-

zichtbare Voraussetzung.

Wenn ξ bezüglich F messbar ist, dann schreiben wir ξ ∈ F
oder formulieren, dass ξ F -messbar ist.

Eine messbare Abbildung ξ : Ω → R heiÿt Zufallsva-



riable. Der Name passt, denn der Wert von X hängt vom

zufälligen Ergebnis ω ab.

Es sei ξ : Ω → R eine Zufallsvariable. Die kleinste σ-

Algebra, so dass ξ messbar ist, heiÿt die von ξ erzeugte

σ-Algebra und wird mit σ(ξ) bezeichnet.

Also

i.) ξ ∈ σ(ξ) und

ii.) wenn ξ ∈ A für eine σ-AlgebraA, dann ist σ(ξ) ⊂ A.

▶ Die kleinste σ-Algebra enthält grobe Mengen. ......

▶ Wenn wir im Folgenden von einer Zufallsvariable spre-

chen, dann gibt es einenWahrscheinlichkeitsraum auch wenn

dieser nicht explizit genannt wird.

2.2.3 Satz: Es sei σ(Z) eine σ-Algebra auf Ω, die durch

eine Zerlegung Z = {Z1, ..., Zn} erzeugt wird. Eine Zu-

fallsvariable ξ ist genau dann σ(Z)-messbar, wenn ξ auf

den Mengen Zi konstant ist.

Beweis: Vgl. Jäger-Ambrozewicz [24, ....]

▶ Wäre die Zufallsvariable ξ nicht auf Zi konstant, dann

könnte man am Wert von ξ mehr ablesen als die Informati-

on, dass ein irgendein ω ∈ Zi eingetreten ist (irgendein ist
wichtig, denn wir wissen nicht welches ω ∈ Zi eingetreten
ist!).



2.2.4 Satz: Es sei ξ : Ω → R eine Abbildung mit endli-

chem Bild(ξ) = {x1, ..., xn}, wobei die xi verschieden sind.

Die Mengen Zi = ξ−1({xi}) de�nieren eine Zerlegung und

es gilt

σ(ξ) = σ(Z)

=

{⋃
k∈J

Zk|J ⊂ {1, ..., n}

}

Beweis: Vgl. Jäger-Ambrozewicz [24, ....]

2.2.5 Beispiel: Es sei ξ : Ω→ R eine Abbildung ((Bernuolli-

)Variable) mit Bild(ξ) = {u, d}, wobei o.B.d.A. u > d. Die

Mengen Zu = ξ−1({u}) = {ξ = u}, Zd = ξ−1({d}) = {ξ =
d} de�nieren eine Zerlegung und

σ(ξ) = σ(Z) = {∅, Zu, Zd,Ω} .

Zu ist Menge der Ergebnisse, bei denen ξ den Wert u an-

nimmt. Zd ist Menge der Ergebnisse, bei denen ξ den Wert

d annimmt.

2.2.6 De�nition: Es sei (Ω,F ,P) einWahrscheinlichkeits-

raum. Ein Folge von Zufallsvariablen ξ1, ξ2, , ..., ξT heiÿt

(zeitdiskreter) stochastischer Prozess.

▶ In der Regel gehen wir davon aus, dass wir die Rea-

lisierungen von ξi sukzessive beobachten. Ein stochas-

tischer Prozess erzeugt somit sukzessive Information.



Diesen Vorgang werden wir wir mathematisch mit einer

sogenannten Filtrationen modellieren. Filtrationen sind

im zeitdiskreten zustandsdiskreten Kontext vergleichsweise

einfach. Die jeweiligen Realisierungen erzeugen Zerlegun-

gen, die dann σ Algebren de�nieren. An die Notation muss

man sich erst gewöhnen. Wenn man sich gewöhnt hat, dann

wird vieles sehr bequem und übersichtlich. Zudem passt die

Notation auch weitestgehend auf den zeitstetigen und zu-

standsstetigen Kontext.

2.2.7 De�nition mit Bemerkungen: Es sei ξ1, ξ2, ..., ξT

ein zeitdiskreter stochastischer Prozessmit Bild(ξt) =

{u, d}, wobei wir 0 < d < u unterstellen. Die (Bernoulli-

)Zufallsvariablen ξt modellieren die Auf/Ab-Bewegungen

des Kurses eines Wertpapiers in den Perioden t = 1, 2, ..., T .

Die Mengen

Z1,(u,∗) = ξ−11 ({u}) = {ω|ξ1(ω) = u} = {ξ1 = u}

Z1,(d,∗) = ξ−11 ({d}) = {ω|ξ1(ω) = d} = {ξ1 = d}

de�nieren eine Zerlegung (Partition)Z1 des Wahrschein-

lichkeitsraum Ω = Z1,(u,∗) ⊎ Z1,(d,∗). Dabei steht der ∗ für
beliebige Fortsetzung des stochastischen Prozesses. Z1,(u,∗)

ist die Menge der Zustände ω, für die der ξ1-Wert u ist;

also ξ1(ω) = u. Analog ist Z1,(d,∗) die Menge der Zustände

ω, für die der ξ1-Wert d ist.

Zu dieser Zerlegung betrachten wir die erzeugte σ-Algebra



F1 = σ(Z1). Die σ-Algebra F1 erfasst den Sachverhalt,

dass man den ersten Kursschritt beobachtet hat.

Die Menge Z1,(u,∗) können wir weiter zerlegen:

Z1,(u,∗) = {ξ1 = u, ξ2 = u} ⊎ {ξ1 = u, ξ2 = d}

= Z2,(u,u,∗) ⊎ Z2,(u,d,∗) .

Analog für Z1,(d,∗)

Z1,(d,∗) = {ξ1 = d, ξ2 = u} ⊎ {ξ1 = d, ξ2 = d}

= Z2,(d,u,∗) ⊎ Z2,(d,d,∗) .

Die Mengen Z2,(u,u,∗), Z2,(u,d,∗), Z2,(d,u,∗) und Z2,(d,d,∗) de�-

nieren die Zerlegung Z2 von Ω. Z2,(u,d,∗) ist beispielsweise

die Menge der Zustände ω, in denen zunächst der Schritt

ξ1(ω) = u und dann der Schritt ξ2(ω) = d stattfanden.

Die Zerlegung Z2 de�niert die σ-Algebra F2. Dabei gilt

F1 ⊂ F2, d.h. F2 ist eine sogenannte Verfeinerung von

F1.

So gehen wir Schritt für Schritt voran und erhalten eine

Folge von Zerlegungen Zt und σ-Algebren Ft mit Ft−1 ⊂
Ft. Die Zerlegung Zt ergibt sich dabei aus Zt−1: Die Men-

gen Zt−1,(x1,...,xt−1,∗) der Zerlegung Zt−1 werden binär zer-

legt, d.h.

Zt−1,(x1,...,xt−1,∗) = Zt,(x1,...,xt−1,u,∗) ⊎ Zt,(x1,...,xt−1,d,∗) .



Quellen: Pliska [37, Seite .....] Compolieti und Marakov [4,

Seite ......] Elliot und Kopp [?, ......]

2.2.8 Satz: Die gerade in (2.2.7) eingeführte σ-Algebra

Ft ist die von den Zufallsvariablen ξ1, ..., ξt erzeugte σ-

Algebra, d.h. die kleinste σ-Algebra, so dass alle Zufallsva-

riablen ξ1, ..., ξt messbar sind:

Ft = σ(ξ1, ..., ξt).

Die σ-Algebra Ft repräsentiert die Information, die ein

Anleger hat, der die Kursentwicklung bis t beobachtet

hat.

2.2.9 Baustellen: Warum gilt Ft = σ(ξt) nicht? ..... Wä-

re Ft = σ(ξt), dann wäre der Anleger vergesslich!

Wir betrachten den Fall T = 2.

Es ist σ(ξ2) = {∅, {(H,H), (T,H)}, {(H,T ), (T, T )}, {H,T}2}.
Es ist σ(ξ1, ξ2) = {∅, {(H,H)}, {(H,T )}, {(T,H)}, {(T, T )}, alle Vereinigungen von .... }
= P({H,T}2). Wäre σ(ξ2) die Information des Anleger,

dann der Anleger vergesslich: Er hätte die erste Kursbewe-

gung vergessen.

▶ Warum gilt σ(ξ1, ξ2) = σ(ξ1)∩σ(ξ2) nicht? Wir betrach-

ten wieder T = 2. Es ist σ(ξ1, ξ2) = P({H,T}2)}.

Es ist σ(ξ1) = {∅, {(H,T ), (H,H)}, {(T, T ), (T,H)}, {H,T}2}.
Es ist σ(ξ2) = {∅, {(H,H), (T,H)}, {(H,T ), (T, T )}, {H,T}2}.
Also σ(ξ1) ∩ σ(ξ2) = {∅, {H,T}2}.



▶ Wie kann man σ(g, f) (auch) charakterisieren? Gemäÿ

Henze [18, Seite 331, 2. Au�age]

σ(f, g) = σ(f−1(B) ∪ g−1(G))

Warum? Alle Mengen in f−1(B) bzw. in g−1(B) müssen in

σ(f, g) liegen. Also gilt für M = f−1(B) ∪ g−1(B), dass
M ⊂ σ(f, g). Dann gilt auch σ(M) ⊂ σ(f, g). Aber es

gilt auch f, g ∈ σ(M). Dann muss σ(f, g) ⊂ σ(M).

2.2.10 De�nition: Es sei (Ω,F ,P) ein Wahrscheinlich-

keitsraum. Eine Folge von σ-Algebren F1,F2, ...,FT mit

Ft ⊂ Ft+1 heiÿt Filtration auf (Ω,F ,P). Ein stochasti-

scher Prozess (Xt) heiÿt F -adaptiert, falls Xt ∈ Ft für
t = 1, ..., N gilt

2.2.11 Bemerkung: In vorhergehenden Abschnitt 2.1 war

Ω = {H,T}N = {(ω1, ..., ωN)|ωi ∈ {H,T}} die Ergeb-

nismenge und die Kursschritte ergaben sich entsprechend:

ξi = u falls ωi = H bzw. ξi = d falls ωi = T . Der Wahr-

scheinlichkeitsraum ist minimal : Genau zu geschnitten auf

das Risiko der Kursentwicklung.

In diesem Anschnitt ist Ω irgendeine Ergebnismenge. So ein

beliebiges Ω kann Risiko umfassender abbilden. Die Kurs-

schritte des riskanten Wertpapiers sind die Realisierungen

eines stochastischen Prozesses auf Ω. Die Kursschritte er-

zeugen Schatten/Information/Teilstrukturen auf (Ω,A,P).
Da wir in diesen Abschnitt zum Binomialbaummodell nur



die erzeugte σ-Algebra verwenden, erhalten wir � wie wir

gleich sehen werden � keine anderen Ergebnisse als in 2.1.

Der Rahmen ist aber �exibler.

Die σ-Algebra Ft repräsentiert die Information über die

Kursentwicklung bis t. In dem von uns betrachten Mo-

dell kann man die Kursentwicklung selbst (die Kurspfa-

de) selbst als Repräsentation der Information verwenden

(so wie im vorhergehenden Abschnitt). Das ist in der Tat

für das Binomialbaummodell auch üblich. In allgemeineren

Modellen ist das aber ungeeignet/unüblich. Als Vorberei-

tung auf die allgemeineren Modelle lohnt sich deshalb der

Umweg über Filtrationen.

Zu jeder Menge Z der Zerlegung Zt gehört ein eindeutig

bestimmter Pfadanfang (x1, ..., xt, ∗). .....

Das Wahrscheinlichkeitsmaÿ ist unabhängig vom stochas-

tischen Prozess generisch gegeben. Aus P ergibt sich die

Verteilung der Zufallsvariablen Pξi

2.2.12 Satz:WennXt : Ω→ Rmessbar bezüglich σ(ξ1, ..., ξt)

ist, dann gibt es eine Abbildung X̃t : {u, d}t → R mit

Xt(ω) = X̃t(ξ1(ω), ..., ξt(ω))

= X̃t(x1, ..., xt),

wobei ξi(ω) = xi gelten soll. ▶Konvention Pfadraum/Zustandsraum:

Auf Basis der Beobachtung 2.2.12 werden wir im Folgenden



Ω

R

{u, d}t

X ∈ σ(ξ1, ..., ξt)

ξ1, ..., ξt

X̃

º Xt ∈ σ(ξ1, ..., ξt)⇒ ∃X̃t : Xt(ω) = X̃t(ξ1(ω), ..., ξt(ω))

Abbildung 2.2.1: Schema zum Satz 2.2.12

z.B. Handelsstrategien in t - die σ(ξ1, ..., ξt−1) messbar sind

� als Funktion des Kursverlauf (x1, ..., xt−1) bis t− 1 ange-

ben, obwohl es gemäÿ De�nition messbare Abbildungen auf

Ω sind; also Funktionen von ω und nicht von (x1, ..., xt−1).

Wir schreiben Xt(x1, ..., xt−1) = X̃t(x1, ..., xt−1) anstatt

Xt(ω), d.h. wir verzichten auf die Tilde .̃

2.2.13 Bemerkung: Die Abbildung Ξt : Ω→ Rt

ω 7→


ξ1(ω)

ξ2(ω)
...

ξt(ω)


ist eine Abbildung von den Zuständen Ω in die Menge der

Pfade Rt (in Spalten erfasst). Das Bild von Ξt : Ω → Rt

ist die Menge der Pfade der Inkremente.



Es gilt

σ(ξ1, ..., ξt) = σ(Ξt).

2.2.14 Bemerkung: Im Satz 2.2.12 haben wir die Infor-

mation bis t intuitiv durch σ(ξ1, ..., ξt) repräsentiert. Da

σ(ξ1, ..., ξt) = σ(Ξt) gilt, können wir dafür auch σ(Ξt) ver-

wenden; vgl. dazu das sogenannte Faktorisierungslemma

(Henze [18, Seite 175]).

Ω

R

Rt ⊃ {u, d}t

Xt ∈ σ(Ξt)

Ξt

X̃t

º Xt ∈ σ(Ξt)⇒ ∃X̃t : Xt(ω) = X̃t(Ξt(ω) )

Abbildung 2.2.2: Faktorisierungslemma: Henze [18, Seite
175]

▶ Baustelle Jetzt wird die Eigenschaft predictable rele-

vant; vgl. Lamberton und Lapayre [30, Seite 183]. Naja,

noch nicht. Wenn der Integrator Spürnge hat und die Zeit

stetig ist. Dann ......

2.2.15 De�nition: Es sei F0,F1, ...,FT eine Filtration.

Ein stochastischer Prozess ht heiÿt previsibel, falls ht ∈
Ft−1, t = 1, ..., T ist.



2.2.16 Bemerkung: Die beobachteten Wertpapierpreis-

änderungen sind die Realisierung von stochastischen Pro-

zessen ξt. Die Kursänderungen erzeugen Information und

die erzeugte Information erfassen wir durch die erzeutge

Filtration.

2.2.17 De�nition: Das Zweiperiodenbinomialbaum-

modell (ZPBBM) ist durch die folgenden Angaben be-

schrieben:

� Es gibt zwei Perioden und drei Zeitpunkt t = 0, 1, 2.

� Anleger können für den Zinssatz r > −1 Geld sicher

anlegen bzw. Kredite aufnehmen. Dieser Zinssatz ist

in beiden Perioden gleich r.

� Gegeben ist ein Wahrscheinlichkeitsraum (Ω,A,P).
Anleger können in ein riskantes Wertpapier investie-

ren. In t = 0 wird das Wertpapier für S0 > 0 gehan-

delt. Für den Preis des Wertpapiers gilt

S1 = S0 ξ1,

S2 = S0 ξ1 ξ2.

Dabei sind ξ1, ξ2 unabhängige Bernoulli Zufallsvaria-

blen auf (Ω,A,P) mit Bild(ξi) = {u, d} und P(ξi =
u) = p > 0. Ferner nehmen wir an, dass 0 < d < u

gilt.



Für die Wahrscheinlichkeitsverteilung von S1 gilt

P(S1 = S0u) = P(ξ1 = u) = p,

P(S1 = S0d) = P(ξ1 = d) = 1− p.

Für die Wahrscheinlichkeitsverteilung von S2 gilt

P(S2 = S0u
2) = P(ξ1 = u, ξ2 = u) = p2,

P(S2 = S0ud) = P(ξ1 = u, ξ2 = d ∨ ξ1 = d, ξ2 = u) = 2p(1− p),

P(S2 = S0d
2) = P(ξ1 = d, ξ2 = d) = (1− p)2.

Wir können die Wahrscheinlichkeiten für die Pfade

auch konkret so angeben:

P(ξ1 = x1, ξ2 = x2) = p#u((x1,x2))(1− p)#d((x1,x2)),

wobei ♯u(x1, x2, ..., xn) gleich der Anzahl der u's in

der Sequenz (x1, x2, ..., xn) und ♯d(x1, x2, ..., xn) gleich

der Anzahl der d's in der Sequenz (x1, x2, ..., xn) be-

zeichnet.

� Anleger können ihr Portfolio nicht nur in t = 0 wäh-

len, sondern in t = 1 anpassen; je nach Informati-

on über die Kursentwicklung. Der Informationsstand

wird durch Sub-σ-Algebren erfasst:

F0 = {∅,Ω}

F1 = σ(ξ1)

Mit Mi, i = 1, 2 bezeichnen wir die Geldmarktpositi-



on in GE und mit ∆i, i = 1, 2 die Anzahl der Stücke

des Wertpapiers zu Beginn der Periode i; also zu den

Zeitpunkten t1, t2. Die Zufallsvariablen Mi und ∆i

sind Fi−1-messbar. Der Zufallsvektor (Mi,∆i)
T , i =

1, 2 bezeichnet das Portfolio in t = i. Die stochas-

tischen Prozesse M1,M2 und ∆1,∆2 bezeichnen wir

als Anlagestrategie.

Da F0 = {∅,Ω} ist, müssen M1 und ∆1 reelle Kon-

stanten sein. Da F1 = σ(ξ1) sind M2 und ∆2 Funk-

tionen der Realisierung der Zufallsvariable ξ1; vgl die

Konvention 2.2.12. In der Tat: Wenn M2 und ∆2 F1

messbar sind, dann sie M2 und ∆2 konstant auf den

Mengen {ξ = u} bzw. {ξ = d}. Die drei Objekte (6
reelle Zahlen)

(M1,∆1)
T , (M2(u),∆2(u))

T , (M2(d),∆2(d))
T

erfassen die gesamte Anlagestrategie.

Die letzte Absatz zeigt, dass wir inhaltlich das gleiche

Modell wie im vorhergehenden Abschnitt erhalten.

Der Wert

V0 =M1 +∆1S0

erfasst die Anfangskosten bzw. Anscha�ungs-

kosten der Strategie � die in t = 0 anfallen. Die



Zufallsvariable

V2 = (1 + r)M2 +∆2S2

erfasst die Auszahlungen der Strategie, die sich

in t = 2 ergeben.

Beachte V2 ∈ F2.

� Das folgende Diagramm zeigt das Zwei-Perioden-Modell

schematisch.

S0

S0d

d2S0

d
1− p

duS0u
p

d
1− p

S0u

udS0

d
1− p

u2S0u
p

u
p

2.2.18 De�niton: Eine Anlagestrategie des ZPBBM heiÿt

selbst�nanzierend, falls

M1 · (1 + r) + ∆1 · S1 =M2 +∆2 · S1

gilt.

2.2.19 De�niton:Das ZPBBM heiÿt arbitragefrei, wenn

es keine selbst�nanzierende Anlagestrategie mit Anschaf-

fungskosten V0 = 0 gibt, so dass die Auszahlung 0 ̸= V2 ≥ 0



nicht-negativ aber von Null verschieden ist.

2.2.20 De�niton: EinWahrscheinlichkeitsmaÿQ auf (Ω,A)
heiÿtRisikoneutralwahrscheinlichkeitsmaÿ des ZPBBM,

wenn

i.) Es gibt ein 0 < q < 1 mit

Q({ξ2 = x1, ξ2 = x2}) = q#u((x1,x2))(1− q)#d((x1,x2)).

ii.) Es gilt

S0 = EQ
(

S1

1 + r

)
= q

S0u

1 + r
+ (1− q) S0d

1 + r
,

S1 = EQ
(

S2

1 + r
| F1

)
.

bzw. ausgeschrieben

S0u = Q(ξ2 = u|ξ1 = u)
S0u

2

1 + r
+Q(ξ2 = d|ξ1 = u)

S0ud

1 + r

= q
S0u

2

1 + r
+ (1− q)S0ud

1 + r

S0d = Q(ξ2 = u|ξ1 = d)
S0ud

1 + r
+Q(ξ2 = d|ξ1 = d)

S0d
2

1 + r

= q
S0ud

1 + r
+ (1− q) S0d

2

1 + r

2.2.21 Baustelle: In der obigen De�nition wird das Risi-

koneutralwahrscheinlichkeitmaÿ über die Werte von ξ1, ξ2

charakterisiert: Q({ξ2 = x1, ξ2 = x2}) = Q(Z2,(x1,x2)) =

q#u((x1,x2))(1−q)#d((x1,x2)). Wir müssen uns überlegen, dass/wie

das konsistent auf ganz (Ω,A) geht. Dazu geben wir die



passende Zähldichte an. Es sei ω ∈ Z2,(x1,x2). Dann

Q({ω}) = q#u((x1,x2))(1− q)#d((x1,x2))

Die Mengen Z2,(x1,x2), x1, x2 ∈ {u, d} de�nieren eine Zerle-

gung von Ω. Je nach dem in welchem Z2,(x1,x2) liegt, ist Q
gemäÿ obiger Formel de�niert.

2.2.22 Satz: Wenn d < 1+ r < u gilt, dann ist der durch

das ZPBBM modellierte Finanzmarkt arbitragefrei. Jede

F2 messbare Auszahlung kann repliziert werden. Das Risi-

koneutralwahrscheinlichkeitsmaÿ ergibt sich, wenn man die

Erfolgswahrscheinlichkeit

q =
1 + r − d
u− d

wählt. Es gelten die Risikoneutralbewertungsformeln

V0 =
EQ(V1)

1 + r

V1 =
EQ(V2|F1)

1 + r

2.2.23 Bemerkung: Das Gesamtmodell ist AF, wenn alle

TM AF sind ......

2.2.24 De�nition: Das n Perioden Binomialbaum-

modell (nPBBM) ist durch die folgenden Angaben be-

schrieben: Lohnt sich der Aufwand

oder reicht 2 Perioden?



� Es gibt n Perioden der Länge∆t und n+1 Zeitpunkte

ti = i ·∆t, i = 0, ..., n.

� Anleger können Geld sicher anlegen bzw. Kredite auf-

nehmen. Die Verzinsung ist in allen Perioden gleich

r∆t, r > −1, wobei wir nun die Verzinsung in der

Form er∆t angeben. Wenn ein Anleger zum Zeitpunkt

ti den Betrag Mi in dieser Anlageform anlegt, dann

ist die Auszahlung in ti+1 sicher er∆tMi.

� Anleger können in ein riskantes Wertpapier investie-

ren. In t = 0 wird das Wertpapier für S0 > 0 gehan-

delt. Für den Preis des Wertpapier gilt

S1 = S0 ξ1,

S2 = S0 ξ1 ξ2,

...

Si = S0 ξ1 ξ2 · ... · ξi

ξi sind unabhängige Bernoulli Zufallsvariablen mit

Bild(ξi) = {u, d} und P(ξi = u) = p > 0. Ferner

nehmen wir an, dass 0 < d < u gilt.

Es ist

P({(ξ1, ..., ξn) = (x1, ..., xn)}) = p#u(x1,...,xn)(1−p)#d(x1,...,xn),

wobei ♯u(x1, x2, ..., xn) gleich der Anzahl der u's in

der Sequenz (x1, x2, ..., xn) und ♯d(x1, x2, ..., xn) gleich

der Anzahl der d's in der Sequenz (x1, x2, ..., xn) be-



zeichnet.

� Anleger können ihr Portfolio nicht nur in t = 0 wäh-

len, sondern zudem in t = ti anpassen; je nach Infor-

mation über die Kursentwicklung. Der Informations-

stand wird durch Sub-σ-Algebren erfasst:

F0 = σ(S0) = {∅,Ω}

Fi = σ(ξ1, ξ2, ..., ξi).

Fi ist also die kleinste σ-Algebra, so dass die Zufalls-
variablen ξ1, ξ2, ..., ξi messbar sind.

Anleger können zu den Zeitpunkten t = ti, i = 0, ..., n−
1 Portfolio (Mi+1,∆i+1) ∈ R2 wählen. Die Zufallsva-

riablenMi+1,∆i+1 sind Fi messbar.4 Die Anleger be-

obachten (und vergessen nicht) sukzessive die Ergeb-

nisse der Bernoulli-Experimente. Mathematisch er-

fassen wir den Informationsstand über dieFt-Messbarkeit,

die im diskreten Zusammenhang eine einfache Ausle-

gung hat: Im Zeitpunkt t = ti haben sie also die ers-

ten i Ergebnisse (ξ1, ..., ξi) beobachtet. Ihre Anlage-

strategie Mi+1,∆i+1 ist also eine Funktion der Reali-

sierung (ξ1, ..., ξi), d.h. (Mi+1,∆i+1) = (Mi+1(ξ1, ..., ξi),∆i+1(ξ1, ..., ξi)).

Einen stochastischen Prozess (Mi,∆i), i = 1, ..., N

nennen wir Handelsstrategie des nPBBM.

4Stochastische Prozesse ϕi, die Fi−1 messbar sind heiÿen predictable. Prozesse,
die Fi messbar sind heiÿen adaptiert. In einigen Quellen wird dieser Unter-
schied vernachlässigt. In diskreten Modell ist der Unterschied in der Tat nicht
wesentlich; in Zeitsteigen Modelle jedoch nicht. Dieser Text soll auf zeitsteige
Modelle vorbereiten und deshalb wird der Unterschied gemacht.



2.2.25 Bemerkung: Die Dynamik der Wertpapierkurse

kann man auch wie folgt angeben:

Si = Si−1 · ξi, i = 1, ..., n

Vorausschauend � nämlich mit Blick auf das Black-Scholes-

Merton Modell � ist insbesondere die folgende Spezi�kation

nützlich. Zunächst

lnSi = lnSi−1 + ln ξi = lnSji−1 + ζi

mit ζi = ln ξi. Jetzt wählen wir µlogs und σ, sodass ∆Si =

lnSi − lnSi−1 = ζi = µlogs · ∆t + σ
√
∆t · zi, wobei zi

iid Bernoulli Zufallsvariablen mit Bild(zi) = {−1, 1} und
P(zi) = 1

2 sind. Wir erhalten also

lnSi = lnSi−1 + µlogs ·∆t + σ
√
∆t · zi

2.2.26 De�nition: 1.) Eine Handelsstratgie (Mi,∆i), i =

1, ..., n heiÿt selbst�nanzierend, wenn für i = 1, ..., n−1

Mie
r∆t + Si∆i ≡Mi+1 + Si∆i+1.

2.) Eine selbst�nanzierende Handelsstratgie heiÿt Arbi-

trage, wenn

i.) M1 +∆1S0 = 0 und

ii.) 0 ̸=Mne
r∆t +∆nSn ≥ 0.

3.) Das NPBBM heiÿt vollständig, wenn es für alle X ∈



Fn eine Handelsstrategie mit

Mne
r∆t +∆nSn ≡ X

gibt.

2.2.27 Bemerkung: i.) Der Preis Sn nimmt nach n Peri-

oden n+1 unterschiedlicheWerte an: S0u
idn−i, i = 0, 1, 2, ..., n.

Es gilt

P(Sn = S0u
idn−i) =

(
n

i

)
pi(1− p)n−i,

so dass der logarithmierte Wertpapierpreis im Zeitpunkt n

binomial verteilt ist.

ii.) Der Preis des Wertpapiers hängt nur von der Anzahl

der u's und d's ab, jedoch nicht von der Reihenfolge der

u's bzw. d's. Der Wertpapierpreis ist pfadunabhängig.

iii.) Die bedingten Auszahlungen X sind im allgemeinen

pfadabhängig.

2.2.28 De�nition: EinWahrscheinlichkeitsmaÿQ auf (Ω,A)
heiÿt Risikoneutralwahrscheinlichkeitsmaÿ, wenn

i.) Es gibt ein 0 < q < 1 mit

Q({(ξ1, ..., ξn) = (x1, ..., xn)}) = q#u(x1,...,xn)(1−q)#d(x1,...,xn).



ii.) Es gilt

S0 = q e−r∆tS1(u) + (1− q) e−r∆tS1(d),

Si(x1, ..., xi) = Q(ξi+1 = u|ξ1,...,i = (x1, ..., xi)) e
−r∆t Si+1(x1, ..., xi, u)

+Q(ξi+1 = d|ξ1,...,i = (x1, ..., xi)) e
−r∆t Si+1(x1, ..., xi, d)

= q e−r∆t Si+1(x1, x2, ..., xi, u)

+ (1− q) e−r∆t Si+1(x1, x2, ..., xi, d)

Die beiden Gleichungen kann man auch kurz so angeben:

Si = EQ (e−r∆tSi+1|Fi
)
, i = 0, ..., n− 1.

2.2.29 Satz: Für das n-Perioden Binomialbaummodell (nPBBM)

mit d < er∆t < u gilt:

1. Der durch dieses nPBBM modellierte Finanzmarkt

ist arbitragefrei.

2. Der durch dieses nPBBM modellierte Finanzmarkt

ist vollständig.

3. Mit q = er∆t−d
u−d als Erfolgswahrscheinlichkeit erhält

man das Risikoneutralwahrscheinlichkeitsmaÿ. (We-

gen der Vollständigkeit ist das Risikoneutralwahrschein-

lichkeitsmaÿ eindeutig.)

4. Für jede bedingte Auszahlung Vn = Vn(x1, ..., xn) ∈
R2n für den Zeitpunkt t = tn ergibt sich der faire



t = 0 Preis V0 als

V0 = e−r·∆t·nEQ(Vn). (2.13)

Die Bewertungsmethode gilt also auch für pfadab-

hängige Auszahlungen!

5. Den fairen t = 0 Preis V0 kann man rekursiv be-

stimmen: Für i = n− 1, ..., 1

Vi(x1, ..., xi) = e−r∆t(qVi+1(x1, ..., xi, u) + (1− q)Vi+1(x1, ..., xi, d))

und schlieÿlich

V0 = e−r∆t(qV1(u) + (1− q)V1(d))

Diese Rekursion kann man auch in der Form

Vi = e−r∆tEQ(Vi+1|Fi)

angeben.

2.3 Exkurs: Ito-Döblin Lemma diskret

▶ Stochastische Analysis (Analysis mit der Brown'schen

Bewegung (BB)) ist kompliziert. Wir wollen also zwar das

Ito-Integral umgehen. Die partielle Di�erentialgleichung von

Black-Scholes-Merton wollen wir aber trotzdem herleiten.

Wir benötigen dafür das folgenden Ito-Döblin für Arme.



2.3.1 De�nition: Es sei I ein Intervall mit 0 ∈ I und

g : I → R eine Abbildung vom . Wir sagen g = o(h), wenn

lim
h→0

g(h)

h
= 0

2.3.2 De�nition: Es sei zk eine symmetrische Bernoul-

li Zufallsvariablen mit Bild(zk) = {−1, 1} und P(zk = 1) =

P(zk = −1) = 1
2. Wir schreiben dann zk ∼ SymBern.

2.3.3 Satz (Ito-Doblin-Lemma): Es sei f = f(t, S) ei-

ne Funktion von t und S. f sei zweimal stetig di�erenzier-

bar bezüglich S und einmal stetig di�erenzierbar bezüglich

t.

Der Kurs St erfülle die Di�erenzengleichung

∆S = µ · S ·∆t + σ · S ·
√
∆t · z, z ∼ iiSymBern

Wir suchen a und b, so dass:

∆f = a ·∆t + b ·
√
∆t · z + o(∆t).

Es gilt

∆f (S, t) = (µ · S · f ′S(S, t) + f ′t(S, t) +
1

2
f ′′SS(S, t) · σ2 · S2) ·∆t

+ σ · S · f ′S(S, t) ·
√
∆t · z

+ o(∆t)



Beweis: Es gilt

∆S ·∆t = (µ · S ·∆t + σ · S ·
√
∆t · z) ·∆t

= (µ · S · (∆t)2 + σ · S · (∆t)3/2 · z) = o(∆t)

(∆S)2 =
(
µ ·∆t + σ · S ·

√
∆t · z

)2
= µ2 · (∆t)2 + 2µσS · (∆t)1

1
2 · z

+ σ2S2 ·∆t · z2︸︷︷︸
=1

= σ2S2 ·∆t + o(∆t)

Für eine Approximation von∆f (S, t)mit einem Fehler von

der Ordnung o(∆t) benötigen wir also nur die Terme der

Ordnung ∆t,∆S und (∆S)2. Also gilt

∆f (S, t) = f ′t(S, t)∆t + f ′S(S, t)∆S +
1

2
f ′′SS(S, t)(∆S)

2 + o(∆t).

Wenn wir noch ∆S und ∆t einsetzen.

∆f (S, t) = f ′S(S, t)[µ · S ·∆t + σ · S ·
√
∆t · z]

+ f ′t(S, t)∆t +
1

2
f ′′SS(S, t)S

2σ2 ·∆t + o(∆t)

und die Behauptung ist bewiesen.

2.3.4 Lemma: Es sei ∆X =
√
∆t · z. Dann (∆X)2 = ∆t.

Für die Brown'sche Bewegung gibt es eine entsprechende

Formel: (dW )2 = dt. So einfach wie in unserem Fall ist

die Bedetung dieser Formel jedoch nicht (siehe Shreve Re-

mark (3.4.4))! So schön einfach ist es hier, weil wir uns mit



Bernoulli-Schocks z ∼ symBern begnügen.

2.4 MPFMM

Baustelle ....



3 Entscheidungstheoretische Basis

3.1 Präferenzen

Dieser Abschnitt orientiert sich an Föllmer und Schied [10,

Kapitel 2]. In den beiden vorhergehenden Abschnitten ha-

ben wir Wertpapierbewertungsmethoden besprochen, die

nicht � jedenfalls nicht explizit � auf die Wünsche und Sor-

gen der Anleger eingehen. Das ist überraschend: Wie kann

es sein, dass die je nach Anleger variierende Aversion ge-

gen Risiken für die Wertpapierbewertung irrelevant ist. In

der Tat sind die Präferenzen der Anleger nicht irrelevant.

In den vorhergehenden Kapiteln war die Preisentwicklung

der Basiswertpapiere exogen vorgegeben. Die Bewertungs-

methoden waren relative Bewertungsmethoden: Die

Preise der Basiswerte werden als gegeben akzeptiert und

daraus ergeben sich die Preise anderer Wertpapiere. Die

Präferenzen werden erstens explizit benötigt, wenn man

die Preise der Basiswertpapiere erklären will. Zweitens er-

weist sich die Analyse der Präferenzen in unvollständigen

Finanzmärkte als nützlich. Das Intervall der fairen Preise

eines Auszahlungspro�ls ist in konkreten Anwendungen re-



gelmäÿig sehr groÿ. Wenn man zusätzlich zur Annahme der

Arbitragefreiheit die Präferenzen des Anlegers modelliert,

dann kann man für eine bedingte Auszahlung auf metho-

disch einwandfreiem Weg einen Preis � und nicht ein gan-

zes Intervall von Preisen � ermitteln. Drittens erhalten wir

eine Herleitung des stochastischen Diskontfaktors auf der

Grundlage der Entscheidungstheorie.

3.1.1 De�nition: i.) Es sei X ̸= ∅ eine Menge. Eine (bi-

näre) Relation R auf X ist eine Teilmenge von X × X .
Für ein Paar mit (x1, x2) ∈ R schreiben wir x1Rx2 und

sagen, dass die Relation für x1 und x2 erfüllt ist (bzw. be-

steht).

ii.) Eine binäre Relation ⪰ heiÿt

ii1.) transitiv, falls: x1 ⪰ x2 und x2 ⪰ x3 impliziert

x1 ⪰ x3.

ii2.) vollständig, falls: für alle x1, x2 ∈ X gilt x1 ⪰ x2

oder x2 ⪰ x1.

iii.) Eine binäre Relation ⪰ heiÿt Präferenzrelation, falls

⪰ vollständig und transitiv ist. Wenn x1 ⪰ x2 gilt, dann

sagen wir x1 ist mindestens so gut wie x2.

iv.) Für eine Präferenzrelation ⪰ de�nieren wir die Relati-

on ≻ durch

x ≻ y ⇔ y ̸⪰ x.

≻ heiÿt strenge Präferenzrelation und durch

x ∼ y ⇔ x ⪰ y und y ⪰ x



die Relation ∼. Man kann sich leicht vergewissern, dass ∼
eine Äquivalenzrelation ist. ∼ heiÿt Indi�erenzrelation.

v.) Wenn es eine Funktion U : X → R mit

x ⪰ y ⇔ U(x) ≥ U(y),

gibt, dann heiÿt U eine numerische Darstellung der

Präferenzen. In diesem Fall nennt man U auch Nutzen-

funktion.

3.1.2 Satz: Es gibt genau dann eine numerische Darstel-

lung der Präferenzen ⪰, wenn es eine abzählbare ord-

nungsdichte Teilmenge Z von X gibt.

Eine Teilmenge Z ⊂ X heiÿt ordnungsdicht, falls es für

alle x1, x2 ∈ X mit x2 ≻ x1 ein z ∈ Z mit x2 ⪰ z ⪰ x1

gibt.

Wenn X abzählbar ist, dann gibt es für jede Präferenzre-

lation eine numerische Darstellung.

▶ In der Mikroökonomie (bei einer mathematischen Aus-

richtung) untersucht man die gerade eingeführten Konzep-

te gründlich und erhält viele schöne Resultate. Da wir diese

Resultate hier und im Folgenden nicht benötigen verweisen

wir auf Kreps [23].

3.1.3 De�nition: i.) Es sei (Ω,F) ein messbarer Raum.

Ein Wahrscheinlichkeitsmaÿ L auf (Ω,F) bezeichnen wir



(auch) als Lotterie.

Ein Dirac Wahrscheinlichkeitsmaÿ δω bezeichnen wir als

konstante Lotterie.

ii.) Es sei (Ω,F) ein messbarer Raum und M eine kon-

vexe Teilmenge aller Wahrscheinlichkeitsmaÿe auf (Ω,F).
Es sei ⪰ eine Präferenzordnung auf M mit numerischer

Darstellung U :M→ R. Wenn es eine messbare Funktion

u : Ω→ R mit

U(L) =
∫
u(ω) dL(ω) = EL(u)

gibt, dann heiÿt diese Darstellung eine von-Neumann-

Morgenstern Darstellung der Präferenzen ⪰.

Der numerische Wert ergibt sich also als der Erwartungs-

wert des Nutzens unter dem Maÿ L. In diesem Fall nennen

wir U(L) Erwartungsnutzen und u Nutzenfunktion.

Wenn Entscheidungen auf Basis des Erwartungsnutzen mo-

delliert werden, dann sagt man, dass die Entscheidungen

auf Basis des Bernoulliprinzips getro�en werden.

3.2 Finanzlotterien

3.2.1 Bemerkung: Wir werden Präferenzen auf Wahr-

scheinlichkeitsmaÿen betrachten. Wie im Kapitel 1 betrach-

ten wir das Experimente mit den Ergebnissen {50, 70, 75, 80, 100} ⊂
R = Ω. Wir hatten uns insbesondere mit den Wahrschein-



lichkeitsmaÿ L1({50}) = 1
2 und L1({100}) = 1

2 beschäftigt

und argumentiert, dass der Erwartungswert als Grundlage

für Entscheidungen ungeeignet ist. Beim Bernoulli Prinzip

sind nicht die Erwartungen über die Ergebnisse re-

levant; also z.B. EL1(idR(ω)). Vielmehr orientiert sich die

Entscheidung an den Erwartungen bezüglich des Nut-

zens aus den Ergebnissen, d.h. EL1(u(ω)). Eine popu-

läre Wahl für u ist � aus Gründen, die wir später erken-

nen werden � der Logarithmus, d.h. u(ω) = ln(ω). Für

die Modellierung von Präferenzen würden wir uns dann an

EL(u(ω)) für L ausM orientieren.

Wir hatten auÿer L1 noch ein zweites Wahrscheinlichkeits-

maÿ betrachtet: L2({70}) = 1
2 und L1({80}) = 1

2. Jetzt

gilt EL1(X) = 75 = EL2(X) aber EL1(u(X)) = 4.258597 <

4.315261 = EL2(u(X)). So ist also in der Tat die zweite

Lotterie besser als die erste; bei gleichem Erwartungswert.

Wir werden�im Folgenden sehen, dass man auf diese Wei-

se � mit dem Bernoulli-Prinzip (Nutzenfunktion, Erwar-

tungsnutzen) � eine potente Methode zur Erfassung von

Risikoaversion erhält.

▶ Im folgenden betrachten wir nicht irgendwelche Ergeb-

nismenge X , sondern Lotterien für monetäre Ergebnisse in

R.

3.2.2 De�nition: Es sei S ⊂ R ein Intervall.

i.) Eine Lotterie � also ein Wahrscheinlichkeitsmaÿ � auf



(S,BS) heiÿt Finanzlotterie oder monetäre Lotterie.

ii.) Gilt für eine Finanzlotterie L zudem

E(L) := EL(idS) =
∫
s dL(s) =

∫
s dF (s) ∈ R,

dann heiÿt L eine integrierbare Finanzlotterie. Wir

nennen E(L) den Erwartungswert der Lotterie L.

Hier muss man beachten, dass der Erwartungswert eines

Wahrscheinlichkeitsmaÿes L de�niert wird. Standardmä-

ÿig de�niert man den Erwartungswert einer Zufallsvariable.

Auch in der obigen Gleichung kommt eine Zufallsvariable

vor, viz. idS(·). Die �unabhängige Variable� in der obigen

De�nition ist jedoch L.

3.2.3 De�nition: Es sei (S,BS) ein Intervall undM eine

konvexe Menge von integrierbaren Finanzlotterien, die die

Menge der konstanten Finanzlotterien enthält.

i.) Eine Präferenzrelation ⪰ heiÿt monoton, falls für alle

x > y auch δx ≻ δy gilt.

ii.) Eine Präferenzrelation ⪰ heiÿt risikoavers, wenn für

alle nicht-konstanten Finanzlotterien L ∈M\{δx : x ∈ S}

δE(L) ≻ L

gilt.

3.2.4 Bemerkung: Wenn L = δx, dann x = E(L).



3.2.5 Satz: Für die Präferenzrelation ⪰ gelte die von-

Neumann-Morgenstern Darstellung

U(L) =
∫
u(s) dL(s) = EL(u).

Dann gilt:

i.) ⪰ ist genau dann monoton, wenn u strikt monoton

wachsend ist.

ii.) ⪰ ist genau dann risikoavers, wenn u ist strikt konkav

ist.

Beweis: Föllmer und Schied [10].

3.2.6 De�nition: Es sei (S,BS) ein Intervall undM eine

konvexe Menge von integrierbaren Finanzlotterien, die die

Menge der konstanten Finanzlotterien enthält. Ferner sei

⪰ eine Präferenzrelation mit von-Neumann-Morgenstern

Darstellung

U(L) =
∫
u(s) dL(s)

mit einer strikt monoton wachsenden und stetigen Funk-

tionen u : S → R.

i.) Die eindeutig bestimmte Lösung c(L) der Gleichung

u(c(L)) = EL(u)

heiÿt das Sicherheitsäquivalent der Finanzlotterie L. Es



gilt

c(L) = u−1(EL(u))

ii.) Die Di�erenz ϱ(L) = E(L)− c(L) heiÿt Risikoprämie

von L.

3.2.7 Bemerkung: Es sei ⪰ eine Präferenzordnung auf

(S,BS)mit von-Neumann-Morgenstern Darstellung U(L) =
EL(u), wobei u zweimal stetig di�erenzierbar sei. Wir set-

zen m = E(L), c = c(L). Dann gilt einerseits

u(c) ≈ u(m) + u′(m)(c−m) = u(m)− u′(m)ϱ

und andererseits

u(c) = EL(u) ≈ EL
[
u(m) + u′(m)(x−m) +

1

2
u′′(m)(x−m)2

]
(3.1)

= u(m) +
1

2
u′′(m)V(L) (3.2)

Zusammen: ϱ ≈ −1
2
u′′(m)
u′(m)V(L). Diese Näherung heiÿtArrow-

Pratt-Approximation der Risikoprämie.

An dieser Darstellung erkennt man sehr gut die Quellen der

Risikoprämie: (1) Objektives Risiko (hier gemessen durch

die Varianz) und (2) Risikoneigung (hier gemessen durch

die Krümmung u′′(m)
u′(m) der Nutzenfunktion).

3.2.8 De�nition: Die Funktion u : S → R sei zweimal



stetig di�erenzierbar und strikt wachsend. Dann heiÿt

α(x) = −u
′′(x)

u′(x)

der Arrow-Pratt-Koe�zient der absoluten Risiko-

aversion von u an der Stelle x.

3.2.9 Bemerkung: Wir bemerken, dass

α(x) = −u
′′(x)

u′(x)
= −

du′

dx

u′
.

Also erfasst α(x) die prozentuale (relative) Änderung des

Grenznutzen u′ , wenn sich x um eine kleine Einheit än-

dert.

Der Koe�zient misst die Krümmung der Nutzenfunkti-

on. Würde man nur u′′(x) als Maÿ der Risikoaversion ver-

wenden, so wäre dieses Maÿ nicht invariant bezüglich a�-

ner Transformation. Da sich bei a�nen Transformation die

Präferenzen nicht ändern, sollte auch ein Maÿ für die Ri-

sikoaversion invariant bezüglich a�ner Transformationen

sein.

3.2.10 Bemerkung: i.) Für den Fall, dass α(x) ≡ α gilt,

kann man nachweisen, dass u von der Form

u(x) = a− be−αx

ist. Funktionen diesen Typs heiÿen CARA-Funktionen (Con-



stant Absolut Risk Aversion).

ii.) Für den Fall, dass für den Koe�zienten der absoluten

Risikoaversion α(x) = γ
x, x ∈ S = (0,∞) mit einer Kon-

stanten γ > 0 gilt, kann man nachweisen, dass � bis auf

eine a�ne Transformation � die Nutzenfunktion von der

Form

u(x) = log(x), falls γ = 1 (3.3)

u(x) =
1

1− γ
x1−γ, falls γ ̸= 1 (3.4)

ist. Funktionen diesen Typs CoRRA-Nutzen-Funktionen

(Constant Relative Risk Aversion).1 Wir bemerken

γ = α(x)x = −du
′

dx

x

u′
.

Also erfasst γ die prozentuale Änderung des Grenznutzens

u′, wenn sich x um 1 Prozent ändert.

3.3 u-Optimale Portfolio und SDF

3.3.1 Bemerkung: Wir betrachten die Entscheidung ei-

nes Investors, der sein Anlagevermögen w0 > 0 entweder

risikolos zum Zins i oder riskant mit Rendite R anlegen

kann (R ist eine Zufallsvariable). Das Endvermögen ist

1Üblich ist die Abkürzung CRRA. Ein Student hat CoRRA vorgeschlagen.



die Zufallsvariable

V = (1 + i)h0 + (1 +R)h1

h0 + h1 = w0

wobei h0 ≥ 0 der risikolos angelegte und h1 ≥ 0 der riskant

angelegte Betrag ist.

Wir können die Restriktion h0 + h1 = w0 verwenden, um

das Optimierungsproblemen auf ein Problem mit einer Kon-

trollvariable zu reduzieren:

V = (1 + i)w0 +Xh1

X = R− i.

Wir unterstellen, dass es für die Präferenzen eine sogenann-

te von-Neumann-Morgenstern gibt:

E(u(V )) = E(u((1 + i)w0 +Xh1)).

Wir unterstellen dabei, dass u : S → R stetig di�erenzier-

bar, strikt konkav und strikt monoton steigend ist. Ferner

unterstellen wir, dass stets V ∈ S gilt und u(V ) für alle

h1 integrierbar ist. Zur Analyse des Optimierungsproblem

betrachten wir

H(h1) = E [u((1 + i)w0 +Xh1)] .

Dann ist H strikt konkav und stetig auf [0, w0] ist.



Wie zuvor betrachten wir die erste Ableitung:

H ′(h1) = E [u′((1 + i)w0 +Xh1)X ] ,

wobei wir voraussetzen, dass H di�erenzierbar ist (die Dif-

ferentiation und der Erwartungswert können vertauscht wer-

den).

Dann gilt

H ′(0) = E [u′((1 + i)w0)X ] = 0⇔ E(X) = 0⇔ E(R) = i.

Weiterhin

� Wenn E(R) > i, dann H ′(0) = E [u′((1 + i)w0)X ] =

u′((1+ i)w0)E [X ] > 0. Unter der Bedingung E(R) >
i wird der Investor einen positiven Betrag riskant an-

legen.

� Gilt jedoch E(R) ≤ i gilt, so ist h1 = 0 optimal, d.h.

der Anleger legt sein Vermögen komplett risikolos an.

3.3.2 Beispiel: Für die Präferenzen eines Investors gebe

es eine vNM-Darstellung mit u(s) = ln(s), s ∈ S = (0,∞).

Der Investor kann in eine riskante Anlageform mit Rendite

R investieren, wobei R = Ru mit Wahrscheinlichkeit 0 <

p < 1 und R = Rd mit Wahrscheinlichkeit 1 − p. Zudem
kann der Investor Geld risikolos zum Zins i anlegen. Dabei

soll Rd < i < Ru gelten.



Dann gilt

h∗1 = (1 + i) · E(R− i)
(Ru − i)(i−Rd)

· w0.

3.3.3 Bemerkung:Wir wollen jetzt unterstellen, dass das

Portfolioproblem eine innere Lösung h∗1 > 0 hat, die durch

die Bedingung erster Ordnung

E [u′((1 + i)w0 +Xh∗1)X ] = 0

charakterisiert ist. Dann gilt

S0 = E
[

ξ

1 + i
S1

]
= E [mS1] ,

wobei ξ = u′(V ∗1 )

E[u′(V ∗1 )]
und m = ξ

1+i.

Die Gleichung S0 = E [mS1] kennen wir insbesondere aus

dem EPFMM. Ein solches m heiÿt stochastischer Dis-

kontfaktor. Wir erhalten somit eine Herleitung des sto-

chastischen Diskontfaktors m auf der Grundlage der Ent-

scheidungstheorie.



4 Portfoliooptimierung

4.1 µ-σ-optimale Portfolios

4.1.1 Bemerkung: In diesem Abschnitt werden sogenann-

te µ-σ-optimale Portfolios besprochen (µ steht für die er-

wartete Rendite und σ für die Standardabweichung der

Rendite). Sehr gute Überblicke zur Mathematik der µ-σ-

optimalen Portfolios geben Back [1, Kapitel 5] und Roll

[38]. Die originären Arbeiten zu diesem Thema stammen

von Markowitz [31, 32].

4.1.2 De�nition, Notation und Bemerkungen: i.) Ein

Portfolio ist ein Vektor h ∈ RN . Dabei erfasst hi die

Stücke (Anzahl) der vom Wertpapier mit der Nummer i

gehaltenen Wertpapiere. Leerverkäufe hi < 0 sind zugelas-

sen.

ii.) Ein Vektor w ∈ RN mit wT1 = 1 (also
∑N

i=1wi = 1)

heiÿt Anteilsvektor. Wir werden unten regelmäÿig An-

teilsvektoren betrachten, die sich auf ein Portfolio h



beziehen. In diesem Fall haben wir

wi =
hiV

i
0∑N

j=1 hjV
j
0

. (4.1)

V i
0 bezeichnet den Preis des Wertpapiers mit der Kenn-

nummer i zum Betrachtungszeitpunkt t = 0; wir verwen-

den einen Superindex um das Wertpapier anzugeben und

den Index für den zeitlichen Bezug. In diesem Fall werden

wir aus sachlogischen Gründen V i
0 > 0, i = 1, ..., N vor-

aussetzen.

iii.) Eine Rendite ist eine quadrat-integrierbare Zufallsva-

riable R : (Ω,F ,P)→ R, die sich in der Form

R =
V − V0
V0

, V0 > 0

schreiben lässt. Die Rendite eines Wertpapiers heiÿt in die-

sem Kapitel riskant, falls V(R) > 0 ist. V0 > 0 bezeichnet

den Preis des Wertpapiers zum Betrachtungszeitpunkt und

V den Preis am Ende des Anlagehorizonts t = 1, wobei wir

den Index für den Zeitpunkt weglassen.

4.1.3 Bemerkung: i.) Alle Zufallsvariablen sind auf dem

gleichen Wahrscheinlichkeitsraum (Ω,F ,P) de�niert.
ii.) Für die Renditen dieses Kapitels unterstellen wir stets

V,R, V i, Ri ∈ L2(Ω,F ,P). Also existieren Erwartungswer-
te, Varianzen und die Kovarianzen.

iii.) Eine Rendite ist also ein Quotient der Form R =

(V − V0)/V0, V0 > 0. Im folgenden werden wir Resulta-



te (Formeln) präsentieren, die sich auf Renditen beziehen.

Für diese Resultate ist es dabei manchmal irrelevant, dass

R sich als Quotient schreiben lässt. Trotzdem wird in den

Sätzen der Ausdruck Rendite verwendet, da dies die im

Fokus stehende Anwendung ist.

iv.) Im folgenden werden wir Resultate (Formeln) präsen-

tieren, die sich auf Anteilsvektoren beziehen. Für diese Re-

sultate ist es dabei manchmal irrelevant, dass es sich um

Anteilsvektoren handel, d.h. einige Resultate gelten auch

für Vektoren ohne eine Darstellung der Form (4.1).
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Abbildung 4.1.1: Besserrichtung. Die Abbildung zeigt
drei uniforme Besserrichtungen und eine
Richtung dessen Einschätzung von der
Risikoneigung des Anlegers abhängt.

4.1.4 Bemerkung: Wir untersuchen in diesem Kapitel

die folgende Situation. Anleger können in N Wertpapiere



(WPe) investieren, die durch ihre Renditen (R1, ..., RN)T

charakterisiert sind. Gegebenenfalls gibt es auch eine risi-

kofreie Anlageform mit fester Rendite Rf ∈ R. Wir un-

terstellen dabei, dass die Anleger von den Renditen nur

den Erwartungswert (die erwartete Rendite) und die Vari-

anz (oder Standardabweichung) beachten. Genauer: Haben

zwei Anlageformen (Wertpapiere, Geldmarktkonto, Portfo-

lios, .... ) die gleiche Varianz, dann wird jenes vorgezogen,

dass eine höhere erwartete Rendite hat. Haben zwei An-

lageformen die gleiche erwartete Rendite, dann wird jenes

vorgezogen, dass die geringere Varianz hat. Die Präferenzen

von µ-σ-Anleger sind in der Abbildung 4.1.1 angedeutet.

Ausgehend vom schwarzen Punkt zeigen die schwarzen und

der grüne Pfeil in Richtungen, die von allen µ-σ-Anlegern

bevorzugt werden. Ob ein bestimmter Anleger die Bewe-

gung in Richtung des blauen Pfeils als eine Verbesserung

emp�ndet, hängt hingegen von seiner Risikoneigung ab.

Obwohl wir diese Risikoneigung nicht konkreter spezi�zie-

ren, können wi weitreichende Resultate ableiten.

4.1.5 Satz:Gegeben seien die RenditenR = (R1, ..., RN)T

von N ∈ N Wertpapieren. Ein Investor sei im Portfolio h

engagiert und es sei

wi =
hiV

i
0∑N

j=1 hjV
j
0

=
hiV

i
0

V0
,

wobei V j
0 > 0, j = 1, ..., N, V0 > 0. w = (w1, ..., wN)

T

ist der Anteilsvektor des Portfolios h. Dann gilt für die



Rendite

R =
V − V0
V0

des Gesamtwertes V = h1V
1 + ... + hNV

N zum Portfolios

h.

R =
V − V0
V0

=

N∑
i=1

wiR
i = wTR =: Rw .

▶ Der folgende Hilfssatz enthält Aussagen und Formel, die

aus der Wahrscheinlichkeitstheorie bekannt sind.

4.1.6 Hilfssatz: i.) Gegeben sei der Zufallsvektor R =

(R1, ..., RN)T mit N ∈ N und v ∈ RN . Dann ergibt sich

für

Rv :=

N∑
i=1

viR
i = vTR

der Erwartungswert und die Varianz als

E(Rv) =

N∑
i=1

viE(Ri) = vTE(R) = vTµ,

V(Rv) =

N∑
i=1

N∑
j=1

vivjΣij = vTΣv.

ii.) Gegeben seien ein RenditevektorR und Vektoren v1,v2 ∈
RN . Es sei

Rvi := vTi R, i = 1, 2.



Dann ist

cov(Rv1, Rv2) = vT1Σv2.

iii.) Gegeben seien die Renditen R = (R1, ..., RN)T von

N ∈ N riskanten Wertpapieren. Dann gilt für die Rendite

Rw eines Portfolios mit Anteilsvektor w, dass

cov(R, Rw) =


cov(R1, Rw)

:

cov(RN , Rw)

 = Σw.

4.1.7 Bemerkung: Wegen der letzten beiden Bemerkun-

gen können wir also die erwartete Rendite und die Varianz

der Rendite eines Portfolios mit Anteilsvektor w mit den

Formeln

E(Rw) =

N∑
i=1

wiE(Ri) = wTE(R) = wTµ,

V(Rw) =

N∑
i=1

N∑
j=1

wiwjΣij = wTΣw.

bestimmen.

Besonders wichtig ist auch die Beobachtung, dass die er-

wartete Rendite eines Portfolios und die Varianz

der Rendite eines Portfolios unabhängig von der

insgesamt eingesetzten Investitionssumme sind (Ska-

lenfreiheit).



▶ Der folgenden Satz beschreibt das konservativste Port-

folio aus riskanten Wertpapieren.

4.1.8 Satz: Gegeben sei ein Vektor R = (R1, ..., RN)T

mit den Renditen von N ∈ N riskanten Wertpapieren. Die

Varianz-Kovarianz-Matrix Σ ∈M(N,N,R) sei positiv de-
�nit. Dann hat das Optimierungsproblem

min
w∈RN

wTΣw u.d.N 1Tw = 1 (4.2)

die Lösung

wgvm =
Σ−11

1TΣ−11
. (4.3)

Beweis: Für den Beweis verwendet man die Methode von

Lagrange. Vgl. Back [1, S. 82-83]. 2

4.1.9 Bemerkung:Varianz-Kovarianz Matrizen sind stets

positiv semide�nit. Die Voraussetzung, dass Σ sogar posi-

tiv de�nit ist, impliziert, dass Σ invertierbar ist. Ferner

folgt, dass es nicht möglich ist, aus den riskanten Wert-

papieren ein Portfolio zu bilden, dass risikofrei ist. Dieser

wohlbekannte Sachverhalt wird im folgenden Lemma fest-

gehalten und bewiesen.

4.1.10 Lemma:Gegeben seien die RenditenR = (R1, ..., RN)T

von N ∈ N riskanten Werpapieren. Die Varianz-Kovarianz-

Matrix Σ der Renditen sei positiv de�nit. Dann gibt es



kein nicht-triviales Portfolio aus diesen Wertpapieren, des-

sen Rendite risikofrei ist.

Beweis: Es sei w ∈ Rn. Dann gilt für die Varianz der Ren-

dite Rw, V(Rw) = wTΣw. Aus V(Rw) = 0 folgtw = 0 [da

Σ positiv de�nit ist]. Also ist das Nullportfolio das einzige

Portfolio mit Varianz Null.

4.1.11 De�nition:Gegeben seien die RenditenR = (R1, ..., RN)T

von N ∈ N riskanten Werpapieren. Die Varianz-Kovarianz-

MatrixΣ der Renditen sei positiv de�nit. Ein Portfolio mit

Anteilsvektor

wgvm =
Σ−11

1TΣ−11

nennen wir gvm-Portfolio (gvm für global varianzmini-

mal).

4.1.12 Bemerkung: Wenn ein Anleger nur auf Risiko-

vermeidung fokussiert ist und das Risiko durch die Va-

rianz erfasst wird, dann ist das gvm-Portfolio für diesen

Anleger optimal.

▶ Der folgende Satz betrachtet die Aufgabe unter allen

Portfolio mit einer Zielrendite µ∗, dasjenige Portfolio zu

ermitteln, das eine minimale Varianz hat. Dieses Portfo-

lio hat typischerweise1 eine höhere Varianz als das gvm-

1Immer dann, wenn die Zielrendite von der Rendite des gvm-Portfolio abweicht,
ist die Varianz des ermittelten vm-Portfolios gröÿer.



Portfolio.

4.1.13 Satz (Grenzportfolio bzw. varianzminimale

Portfolio): Gegeben seien N Wertpapiere mit riskanten

Renditen R = (R1, ..., RN)T , wobei µ = E(R) linear un-

abhängig von 1 und Σ positiv de�nit ist. Dann ist

wvm = Σ−1MB−1µ̃∗

der Anteilsvektor des varianzminimalen Portfolios mit er-

warteter Rendite µ∗. Das Portfolio wvm löst also das Op-

timierungproblem

min
w∈RN

wTΣw u.d.N 1Tw = 1,wTµ = µ∗.

Dabei ist

M = (µ ...1) ∈M(N, 2,R)

µ̃∗ = (µ∗, 1)T ∈M(2, 1,R)

B = MTΣ−1M ∈M(2, 2,R).

vm steht für varianzminimal.

Beweis: Der Beweis basiert wieder auf der Methode von

Lagrange (vgl. Zivot [52, S. 15]).

4.1.14 Bemerkung: Die Bedingung, dass 1 linear unab-

hängig von µ ist, bedeutet, dass die erwarteten Renditen

nicht alle übereinstimmen.



4.1.15 Satz, De�nitionen und Bemerkungen (Grenz-

portfoliohyperbel): Gegeben seien N Wertpapiere mit

riskanten Renditen R = (R1, ..., RN)T , wobei µ = E(R)

linear unabhängig von 1 undΣ positiv de�nit ist. De�niere

A = µTΣ−1µ, B = µTΣ−11, C = 1TΣ−11

Dann ist

σ2Rw =
A− 2BµRw + Cµ2Rw

AC −B2
(4.4)

die Varianz der Grenzportfolio mit erwarteter Rendite

µRw.

Die Funktion

R→ R2, µ 7→
(
A− 2Bµ + Cµ2

AC −B2
, µ

)T
de�niert eine Kurve in der σ-µ-Ebene, die die Gestalt ei-

ner um 90 Grad gedrehten Parabel hat. Die Kurve heiÿt

Grenzportfolioparabel. Die Kurve

R→ R2, µ 7→

(√
A− 2Bµ + Cµ2

AC −B2
, µ

)T

heiÿt Grenzportfoliohyperbel.

Für µ ̸= B
C ist die Steigung der Grenzportfoliohyperbel

dµ

dσ
= −

∂F
∂σ
∂F
∂µ

,
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Abbildung 4.1.2: Eine Grenzportfoliohyperbel. Die Port-
folios die zu dem schwarzem Arm gehö-
ren heiÿen e�zient. Die, die zum rotem
Arm gehören, ine�zient. Die grünen
Punkte gehören zu den drei gegebenen
Wertpapieren aus den Portfolio gebildet
werden können.

wobei

F (µ, σ) =
A− 2Bµ + Cµ2

AC −B2
− σ2.

Also ist die Steigung der Grenzportfoliohyperbel

dµ

dσ
= −σ(AC −B

2)

Cµ−B
.

4.1.16 Bemerkung: Die Abbildung 4.1.2 zeigt exempla-

risch eine Grenzportfoliohyperbel. Die µ-σ auf dem durch-

gezogenen schwarzen Arm gehören zu den e�zienten Port-

folio. Auch die Portfolios, die zu dem gestrichelten Arm

gehören sind Grenzportfolio; diese Portfolio heiÿen ine�-

zient. Ein µ-σ-Anleger würde � wenn seine Wahl auf die



riskanten Wertpapiere beschränkt ist stets e�ziente Grenz-

portfolio wählen, da diese so weit wie möglich im Nord-

Westen liegen. Wie wir gesehen haben sind dies die Besser-

richtungen.

4.1.17 Bemerkung: Wir betrachten den Fall mit N = 2.

Dann ist der Anteilsvektor von der Form w = (w, 1− w).
Für die erwartete Rendite erhalten wir

E(Rw) = wµ1 + (1− w)µ2

und für die Varianz gilt

V(Rw) = w2σ21 + 2w(1− w)ρσ1σ2 + (1− w)2σ22, (4.5)

ρ = cov(R1, R2)/(σ1σ2). (4.6)

Wenn wir eine Zielrendite µ∗ vorgeben, dann können wir

w explizit bestimmen:

µ∗ = wµ1 + (1− w)µ2 = w(µ1 − µ2) + µ2

⇔ w =
µ∗ − µ2
µ1 − µ2

.

Wenn man dieses w in die Varianzformel einsetzt, dann

erhält man

σ2Rw = V(Rw) =
(
µ∗−µ2
µ1−µ2

)2
σ21 +

(
µ1−µ∗
µ1−µ2

)2
σ22 (4.7)

+2
(
µ∗−µ2
µ1−µ2

)(
µ1−µ∗
µ1−µ2

)
ρσ1σ2. (4.8)

Für diesen Fall und in dieser Form erkennt man ganz un-

mittelbar, dass die Grenzportfolio in der µ∗-σ2Rw eine Pa-



rabel bilden (das wussten wir aber schon aus Satz 4.1.15).

Die Darstellung zeigt auch den Ein�uss der Korrelation ρ

auf die Form der Kurve der Grenzportfolio. In der Abbil-

dung 4.1.3 sind zwei Wertpapiere WP 1 und WP 2 mit

µ1 = 0.14, σ1 = 0.16, µ2 = 0.04, σ1 = 0.08 gegeben. Die

Abbildung zeigt die Grenzportfolio für unterschiedliche ρ.

Für ρ = −1 erhält man einen Kegel. In diesem Fall ist ein

Hedge möglich, so dass die Varianz der Rendite des Portfo-

lio Null wird (was kann man dann über Σ sagen?). Das ist

natürlich keine Überraschung, denn wenn die Wertpapiere

perfekt negativ korreliert sind, dann kann man ein Wertpa-

pier mit dem anderen Wertpapier perfekt hedgen. Wir be-

trachten zunächst den Bereich zwischen µ1 und µ2. Für grö-

ÿere ρ verschlechtern sich hier die Hedging-Möglichkeiten.

Die Hyperbel entfernt sich von der Ordinate. Wenn man

den Bereich oberhalb von µ1 betrachtet, dann erkennt man,

dass die sich Hebelmöglichkeiten verbessern, wenn ρ gröÿer

wird.

An dieser Stelle merken wir an, dass für N = 2 die Wertpa-

piere selbst Grenzportfolio sind, d.h. die WP 1 und WP 2

liegen wie in der Abbildung 4.1.3 ersichtlich auf der Grenz-

portfoliohyperbel. So gilt das jedoch nur für N = 2.

4.1.18 Bemerkung: Bisher haben wir nur den Fall mit

N riskanten Wertpapieren betrachtet. Im folgenden unter-

stellen wir, dass der Anleger auch Zugang zu einer risiko-

losen Anlageform hat. Darunter wird typischerweise eine
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Abbildung 4.1.3: Unterschiedliche Rho. Die Abbildung
zeigt die Grenzportfolio für unterschied-
liche Korrelationen.

staatliche Anleihe mit höchster Bonität und mit passender

Laufzeit verstanden. Wir werden sehen, dass man in die-

sem Fall die Anlageentscheidung gedanklich trennen kann.

(1) Zunächst wird wie gehabt das riskante Anlage Univer-

sum betrachtet und es werden insbesondere die Grenzport-

folio bestimmt (diese ist in der Abbildung 4.1.4 für drei

WP angegeben). (2) Unter den riskanten Portfolio ist ei-

nes in Kombination mit der risikolosen Anlageform ausge-

zeichnet; nämlich das sogenannte Tangentialportfolio (die-

ses Portfolio ist in der Abbildung 4.1.4 eingetragen. Erken-



nen Sie das spezielle dieses Portfolio). Der Anleger kombi-

niert dann dieses Portfolio nach seinem Risiko-Gusto mit

der risikofreien Anlage, d.h. der Anlieger bildet Portfolio

aus dem Tangentialportfolio und der Anleihe. Alle µ-σ die-

ser Portfolio � ohne Leerverkäufe des Tangentialportfolio �

liegen in der Abbildung auf der durchgezogenen Halbge-

raden, die durch den roten und den blauen Punkt gehen.

Portfolio, die oberhalb der Geraden liegen sind nicht er-

reichbar und Portfolio, die unterhalb der Geraden liegen,

sind nicht optimal. Ein Anleger, der relativ risikoavers ist,

würde ein Portfolio wie das durch den roten Stern markier-

te wählen, während der blaue Stern die Wahl eines weniger

risikoaversen Anlegers markiert.

4.1.19 De�nition und Notation: Es seien N Wertpa-

piere mit riskanten Renditen R = (R1, ..., RN)T gegeben

sowie eine risikofreie Anlageform mit �xer Rendite Rf ∈ R.
Ein Portfolio aus den N riskanten Wertpapieren und der

risikofreien Anlageform wird durch Angabe des Anteils-

vektors w ∈ RN und dem Anteil 1 − α, der risikolos

investiert ist, charakterisiert. Für den Anteilsvektor die-

ses Portfolio aus N + 1 Anlageformen schreiben wir w̄ =

(αw1, ..., αwN , 1− α)T .

Wir bemerken, dass man einen Vektor w̃ ∈ RN mit α =



Standardabweichung

E
rw

ar
te

te
 R

en
di

te

0.00 0.05 0.10 0.15

0.
00

0.
02

0.
04

0.
06

Tangentialportfolio

Abbildung 4.1.4: µ-σ-Diagramm zur Illustration der ge-
danklichen Trennung wie in dieser Be-
merkung besprochen.

Quelle: Eigene Darstellung

∑N
i=1 w̃i ̸= 0 (und i.A. α =

∑N
i=1 w̃i ̸= 1) in der Form

w̃ = (w̃1, ..., w̃n)
T

= (α
w̃1

α
, ..., α

w̃N
α

)T

= (αw1, ..., αwN)
T

schreiben kann, wobei dann
∑N

i=1wi = 1 gilt. Dann erfas-

sen die wi die Aufteilung des Vermögens, dass in riskante

Wertpapiere angelegt ist, und z.B.
∑N

i=1 w̃i = α > 1 würde

bedeuten, dass mehr als 100 Prozent des Anlagewertes in

den N riskanten Wertpapieren investiert ist.



Einen Anteilsvektor w̄ = (αw1, ..., αwN , 1 − α)T geben

wir auch in der Form (w̃1, ..., w̃N , 1 − α)T an, wobei dann

α =
∑N

i=1 w̃i. Wenn wir einen Vektor w ∈ RN als Anteils-

vektor bezeichnen, obwohl wT1 ̸= 1, dann meinen wir den

Anteilsvektor (wT , 1− α).

Istw der Anteilsvektor für die riskantenWertpapiere 1, ..., N

und w̄ = (αw1, ..., αwN , 1− α)T ein Anteilsvektor für das

um die risikolose Anlageform erweiterte Portfolio. Dann

gilt (natürlich)

(αw1, ..., αwN , 1− α) · 1 = 1− α +

N∑
i=1

αwi

= 1− α + α

N∑
i=1

wi = 1.

4.1.20 Beispiel: Es sei w = (0.7, 0.3) und α = 0.4. Für

das Portfolio gilt: 40% des Vermögens werden in zwei Wert-

papiere investiert und 60 % am Geldmarkt angelegt. Von

den 40 %, die in Wertpapiere investiert werden, werden 70

% in das erste Wertpapier investiert. In der oben geführten

Notation w̄ = (0.4 · 0.7, 0.4 · 0.3, 0.6) = (0.28, 0.12, 0.6).

Alternativ kann man das Portfolio auch durch den Vek-

tor w̃ = (0.28, 0.12)T angeben. In diesem Fall muss man

α = 0.28 + 0.12 = 0.4 ausrechnen (mitdenken).

4.1.21 Satz: Es seien N Wertpapiere mit riskanten Ren-

diten R = (R1, ..., RN)T gegeben. Gegeben sei ferner ein



risikoloses Wertpapiere mit Rendite Rf . Wir betrachten

das Portfolio mit Anteilsvektor w̄ = (αw1, ..., αwN , 1−α).
Für die Rendite Rw̄ dieses Portfolios gilt:

Rw̄ = Rf ± σRw̄

σRw
(Rw −Rf)

E(Rw̄) = Rf ±
(
E(Rw)−Rf

σRw

)
· σRw̄,

wobei w = (w1, ..., wN)
T der Anteilsvektor der riskanten

Wertpapiere ist. Dabei gilt in den obigen Gleichungen +

für α > 0 ist und − für α < 0.

Beweis: Für die Rendite Rw̄ gilt

Rw̄ = (1− α)Rf + αRw

Rw = wTR.

Für die Varianz des Portfolio gilt

σ2Rw̄ = V(Rw̄) = V((1− α)Rf + αRw) = α2V(Rw) = α2σ2Rw,

also σ2Rw̄ = α2σ2Rw. Ist α > 0, so gilt

σRw̄ = sd(Rw̄) = α · σRw.

Wir erhalten für α > 0

Rw̄ = Rf +
σRw̄

σRw
(Rw −Rf).

Für den Fall α < 0 erhalten wir in analoger Weise nur mit



vertauschtem Vorzeichen (da σRw̄ = (−α)σRw)

Rw̄ = Rf − σRw0

σRw
(Rw −Rf).

Zusammengefasst erhalten wir

E(Rw̄) = Rf ±
(
E(Rw)−Rf

σRw

)
· σRw̄.

4.1.22 Bemerkung: Wenn wir Portfolio bestehend aus

riskantenWertpapieren und der risikolosen Anlage betrach-

ten, dann erhalten wir also einen a�nen Zusammenhang

zwischen der erwarteten Portfoliorendite E(Rw̄) und der

Standardabweichung der Portfoliorendite σRw̄, wobei die

Steigung dem sogenannten Sharpe-Ratio des risikobehaf-

teten Teils entspricht. Dieser Zusammenhang hat die fol-

gende Interpretation: Wenn das Risiko erfasst durch die

Varianz um eine Einheit ansteigt, dann steigt die erwar-

tete Rendite um das Sharpe-Ratio an. Das Sharpe-Ratio

erfasst also die Risikovergütung je Einheit Risiko. Hier

sollte man beachten, dass eine Variation von α mit einer

Variation von σRw0 einhergeht und letztere wird durch den

in Rede stehenden a�nen Zusammenhang erfasst.

4.1.23 De�nition: Der Quotient

SRw =
E(Rw)−Rf

σRw

heiÿt Sharpe-Ratio/Sharpe-Quotient des Portfolio mit

Anteilsvektor w.



4.1.24 Bemerkung: Der Sharpe-Quotient erweist sich als

sehr nützlich. Wir betrachten dazu zwei Portfolio mit An-

teilsvektoren w1 und w2 bestehend aus riskanten Wertpa-

pieren. Wir unterstellen zur Vereinfachung, dass die Stan-

dardabweichungnen der Renditen übereinstimmen: σRw1 =

σRw2 . Wir unterstellen ferner, dass der Sharpe-Quotient des

ersten Portfolio gröÿer als der des zweiten ist: SR1 > SR2.

Wenn diese beiden Portfolio jeweils mit der risikolosen An-

alge kombiniert werden, dann ergeben sich zwei Kegel:

E(R1) = Rf ± SR1σ

E(R2) = Rf ± SR2σ

Die beiden Kegel sind in der Abbildung 4.1.5 dargestellt.

Der blaue Kegel gehört zu dem kleineren Sharpe-Quotienten

(wobei die Standardabweichungen o.E.d.A. übereinstim-

men). Man erkennt unmittelbar, dass der Kegel strikt grö-

ÿer ist, wenn der Sharpe-Quotient gröÿer ist. Alle Anle-

ger würden dementsprechend lieber das Portfolio 1 mit

der risikolosen Anlage mischen als das Portfolio 2. In der

Tat sind aus Sicht der Anleger Portfolio mit Anteilsvek-

toren am besten, deren betragsmäÿiger Sharpe-Quotient

|SRw| maximal ist, da dann der Kegel am meisten aufge-

spannt ist und der Anleger Kombinationen weiter im Nord-

Westen erreichen kann. Diesen Aspekt werden wir später

aufgreifen. Die Abbildung 4.1.6 zeigt, dass ein Portfolio mit

einem negativen Sharpe-Quotient �attraktiver� sein kann

als ein Wertpapier mit einem positiven aber betragsmäÿig



kleineren Sharpe-Quotienten. Hier würde ein Anleger mit

Leerverkäufen des grünen Wertpapiers und einer passen-

den Anlage am Geldmarkt eine besserer erwartete-Rendite-

Standardabweichung Kombination erreichen als mit dem

blauen Wertpapier (In einigen Quellen wird über diesen

Fall salopp hin weggegangen und formuliert, dass der Sharpe-

Quotient maximal sein solle).
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Abbildung 4.1.5: Unterschiedliche Sharpe-Quotienten.
Der grüne Kegel gehört zu dem Port-
folio mit dem gröÿerem Sharpe-
Quotienten. Die durchgezogenen Linien
gehören zu α ∈ [0, 1], die gepunkteten
zu α > 1 (gehebelte Postion) und die
gestichelten zu α < 0 (Leerverkauf).

Quelle: Eigene Darstellung
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Abbildung 4.1.6: Negativer Sharpe-Quotient. Der grü-
ne Kegel gehört zu dem Portfolio mit
einem negativen Sharpe-Quotienten.
Dieses Wertpapier ist interessanter,
da es bei einem entsprechenden Leer-
verkauf eine besser Rendite-Varianz-
Kombination erlaubt.

Quelle: Eigene Darstellung



4.1.25 Satz (Grenzportfolio): Gegeben seien N Wert-

papiere mit riskanten Renditen R = (R1, ..., RN)T , wobei

der µ = E(R) nicht zu 1 proportional und Σ nicht singu-

lär ist. Gegeben sei ferner eine risikofreie Anlageform mit

Rendite Rf ∈ R, wobei Rf ̸= µTwgvm. Dann hat das Op-

timierungsproblem

min
w̃∈RN

w̃TΣw̃ u.d.N (µ−Rf1)T w̃ = µ∗ −Rf (4.9)

die Lösung2

w̃∗ =
µ∗ −Rf

(µ−Rf1)TΣ−1(µ−Rf1)
Σ−1(µ−Rf1) (4.10)

Die so beschriebene Portfolio de�nieren einen Kegel in der

σ-µ-Ebene den wir Grenzportfoliokegel nennen.

Beweis: siehe Back [1]

4.1.26 Lemma: Die Varianz der Rendite Rw̄ eines Port-

folios mit Anteilsvektor w̄ = (w̃1, ..., w̃N , 1 − α)T , w̃ =

(w̃1, ..., w̃N)
T , α =

∑N
i=1 w̃i ist

V(Rw̄) = V((1− α)Rf +

N∑
i=1

w̃iR
i) = w̃TΣw̃.

4.1.27 Bemerkung:Wir beachten zunächst α =
∑N

i=1 w̃i

2Beachte, dass w̃∗ nicht notwendigerweise ein Anteilsvektor ist, d.h. i.A. gilt∑
j=1,...,N w̃i = 1 nicht.



und

(µ−Rf1)T w̃ = µ∗ −Rf

⇔ µT w̃ − αRf = µ∗ −Rf

⇔ µT w̃ + (1− α)Rf = µ∗.

Also ist µ∗ die erwartete Rendite des Portfolios mit An-

teilsvektor w̄ = (w̃T , 1 − α). Im Satz 4.1.25 erfasst die

Nebenbedingung des Optimierungsproblems diesen Sach-

verhalt.

Gemäÿ des vorgehenden Lemma ist die Varianz der Ren-

dite des Portfolios w̄ gerade die Zielfunktion aus dem Satz

4.1.25: V(Rw̄) = w̃TΣw̃ Nach Satz 4.1.25 erhält man ein

Grenzportfolio gemäÿ

w̄∗ = (w̃∗, 1− α), α = 1T w̃∗,

wenn w̃∗ wie im vorhergehenden Satz berechnet wird. Also

ist w̄∗ ein Portfolio mit erwarteter Rendite µ∗ und minima-

ler Varianz (bzw. Standardabweichung). Solche Portfolio

heiÿen Grenzportfolio.

4.1.28 Satz (Tangentialportfoilio): Gegeben seien N

Wertpapiere mit riskanten Renditen R = (R1, ..., RN)T ,

wobei der µ = E(R) nicht zu 1 proportional und Σ nicht

singulär ist. Gegeben sei ferner ein risikoloses Wertpapiere

mit Rendite Rf , die von der Rendite des global varianz-

minimalen Portfolio verschieden ist (d.h. Rf ̸= µTwgvm).



Dann ist

wta =
1

1TΣ−1(µ−Rf1)
Σ−1(µ−Rf1)

der Anteilsvektor eines Tangentialportfolios, d.h. das Port-

folio mit folgenden Eigenschaften:

� (wta)T 1 = 1.

� An der zugehörigen Stelle der σ-µ-Ebene berühren

sich die Grenzportfoliohyperbel und der Grenzport-

foliokegel.

� Ein Portfolio mit Anteilsvektor wta ist sowohl für

einen Finanzmarkt einschlieÿlich der risikolosen An-

lageform als auch für den Finanzmarkt ohne risikolose

Anlageform ein Grenzportfolio (jedoch nicht notwen-

digerweise e�zient).

� Der Betrag des Sharpe-Ratio ist maximal.

Beweis: Vgl. Back [1, S. 86-88]. 2

4.1.29 Bemerkung: Die Abbildung 4.1.7 fasst die Analy-

se bis hier hin gra�sch zusammen. Ein µ-σ-Anleger ermit-

telt zunächst die Grenzportfolio der riskanten Wertpapie-

re; das ist die Hyperbel in der Abbildung 4.1.7. Dann wird

das Tangentialportfolio (das ist der blaue Punkt) ermittelt.

Dieses Tangentialportfolio wird dann mit der risikofreien

Anlage kombiniert. Alle Kombinationen dieser Art bilden



die Grenzportfolio (einschlieÿlich der risikofreien Anlage);

das ist der Kegel aus der durchgezogenen Linie und der

gestichelten Linie. Die e�zienten Portfolio liegen dann auf

dem oberen Rand des Kegels (die durchgezogenen Linie).

4.1.30 Bemerkung: Der in der Abbildung 4.1.7 darge-

stellte Fall kann als der Normalfall angesehen werden. Al-

lerdings ist es auch möglich, dass das Tangentialportfolio

ine�zient ist. Das ist dann der Fall, wenn Rf > E(Rgvm)

ist. Diese Situation ist in der Abbbildung 4.1.8 dargestellt.

Auch in diesem Fall liegen die e�zienten Portfolio auf dem

oberen Rand des Kegels. Allerdings ergeben sich diese Port-

folios durch Leerverkauf des Tangentialportfolio und der

Anlage am Geldmarkt. Das bemerkenswerte ist, dass sich

hier die besten Anlagechance aus der Kombination mit ei-

nem an-und-für-sich schlechten Wertpapier ergeben. Dieses

schlechte Wertpapier wird leer verlauft und so werden aus

einen pessimistischen Umfeld Anlagechancen.

4.1.31 Bemerkung: Für den Fall, dass eine risikolose An-

lageform existiert kann man das Grenzportfolio mit Rendi-

te µ∗ gemäÿ Satz 4.1.25 bestimmen. Alternativ kann man

auch so vorgehen. Man bestimmt zunächst das Tangential-

portfolio und dessen Rendite Rwta. Dann löst man

(1− α)Rf + αRwta = µ∗,

α =
µ∗ −Rf

Rwta −Rf
.



Das Grenzportfolio mit einer erwarteten Rendite von µ∗ ist

dann w̄ = (w, 1− α),w = αwta.

4.2 CAPM
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Abbildung 4.1.7: µ-σ-Diagramm. Die schwarze Kurve
zeigt die µ-σ der Grenzportfolio der ris-
kanten Wertpapiere. Der Kegelrand (aus
durchgezogener und gestrichelter Linie)
zeigt die µ-σ der Grenzportfolio aller
Wertpapiere. Der blaue Punkt markiert
das µ-σ des Tangentialportfolio. Die
durchgezogene Linie zeigt die µ-σ der
e�zienten Portfolio und die gestichelte
Linie die der ine�zienten Portfolio.

Quelle: Eigene Darstellung
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Abbildung 4.1.8: µ-σ-Diagramm. Die schwarze Kurve
zeigt die µ-σ der Grenzportfolio der ris-
kanten Wertpapiere. Der Kegelrand (aus
durchgezogener und gestrichelter Linie)
zeigt die µ-σ der Grenzportfolio aller
Wertpapiere. Der blaue Punkt markiert
das µ-σ des Tangentialportfolio. Die
durchgezogene Linie zeigt die µ-σ der
e�zienten Portfolio und die gestichelte
Linie die der ine�zienten Portfolio. Hier
hat das Tangentialportfolio einen nega-
tiven Sharpe-Quotienten.

Quelle: Eigene Darstellung



5 Risikoanalyse

Verteilungsfunktionen werden in allen Bücher zur Wahr-

scheinlichkeitstheorie behandelt; also auch in Henze [18].

Quantilsfunktionen werden dort auch behandelt und ver-

gleichsweise detailliert in Föllmer und Schied [10] unter-

sucht. Quantile und Quantilsfunktionen sind insbesondere

für die Finanzmathematik (Risikomanagement) von

SEHR groÿer Bedeutung. In der Tat ist das bekannteste

Risikmaÿ � der Value at Risk � ein Quantil.

5.1 Verteilungsfunktion

5.1.1 De�nition: Eine Funktion F : R → [0, 1] heiÿt

Verteilungsfunktion, falls:

� F ist nicht fallend, d.h. x ≤ y impliziert F (x) ≤
F (y).

� F ist von rechts stetig, d.h. limy→x,y>x F (y) = F (x).

� limx→−∞ F (x) = 0, limx→∞ F (x) = 1.
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5.1.2 Satz: Es sei P einWahrscheinlichkeitsmaÿ auf (R,B).
Dann ist

F =

{
R→ [0, 1]

x 7→ P((−∞, x])

eine Verteilungsfunktion. F (x) = P((−∞, x]) ist also

die Wahrscheinlichkeit, beim Experiment (Ω,B,P) ein Er-

gebnis kleiner oder gleich x zu beobachten.

5.1.3 Satz: Es sei F : R → [0, 1] eine Verteilungsfunkti-

on. Dann gibt es genau ein Wahrscheinlichkeitsmaÿ P auf

(R,B), so dass P((−∞, x]) = F (x) für alle x ∈ R gilt.

5.1.4 Satz: i.) Es sei F : R → [0, 1] eine Verteilungs-

funktion. Dann existiert für alle x ∈ R der linksseitige

Grenzwert

lim
y→x,y<x

F (y) =: F (x−).

Für diesen Grenzwert schrieben wir F (x−).

Beweis: Vgl. Rudin [40, Seite 95]

ii.) Es sei F eine Verteilungsfunktion, dann ist die Menge

der Unstetigkeitsstellen höchstens abzählbar unendlich.

5.1.5 Bemerkung: Die Unstetigkeitsstellen einer Vertei-

lungsfunktion sind nicht notwendigerweise isoliert (vgl. Ru-

din [40, Seite 97]).



5.1.6 Satz: Es sei P einWahrscheinlichkeitsmaÿ auf (R,B)
und F : R → [0, 1], die durch P wie in (5.1.2) de�nierte

Verteilungsfunktion mit F (x) = P((−∞, x]). Dann gilt für

alle x, y ∈ R, x < y:

i.) F (x) = P((−∞, x])

ii.) F (x−) = P((−∞, x))

iii.) F (x) = 1− P((x,∞))

iv.) F (x−) = 1− P([x,∞))

v.) P({x}) = F (x)− F (x−) [Sprunghöhe bei x]

vi.) P((x, y]) = F (y)− F (x)

vii.) P([x, y]) = F (y)− F (x−)

viii.) P((x, y)) = F (y−)− F (x)

ix.) P([x, y)) = F (y−)− F (x−)

5.1.7 Satz: Es sei f : R → R eine Dichte. Dann ist F :

R→ [0, 1] mit

F (x) =

∫ x

−∞
f (z)dz

eine Verteilungsfunktion.

Man spricht von der Verteilungsfunktion F mit derDichte

f .

5.1.8 Satz: Es sei Ω ⊂ R höchstens abzählbar, F = P(Ω)
und P ein diskretes Wahrscheinlichkeitsmaÿ auf (Ω,F)



mit Zähldichte p. Dann ist F : R→ [0, 1] mit

F (x) =
∑

k∈(−∞,x]∩Ω

pk

eine Verteilungsfunktion. Das ist eine Treppenfunktion mit

Stufen an den Stellen k mit Stufenhöhe pk.

5.1.9 Bemerkung: Es gibt auch Verteilungsfunktionen,

die weder eine Dichte haben noch diskret sind: Verteilungs-

funktionen mit Sprungstellen, die aber keine (reinen) Trep-

penfunktionen sind.

5.2 Quantile, Quantilsfunktionen und

Verallgemeinerte Inverse

5.2.1 De�nition: Es sei (Ω,F ,P) eine Wahrscheinlich-

keitsraum, X eine reellwertige Zufallsvariable mit Vertei-

lungsfunktion F und λ ∈ (0, 1). Eine reelle Zahl q heiÿt

λ−Quantil der Zufallsvariable X , falls

P(X ≤ q) ≥ λ und

P(X ≥ q) ≥ 1− λ .

In Worten: (i) Die Wahrscheinlichkeit, dass X die Grenze

q nicht überschreitet ist mindestens λ und (ii) die Wahr-

scheinlichkeit, dass X die Grenze q nicht unterschreitet ist

mindestens 1− λ.



▶Das ist vielleicht eine/die Gelegenheit in z.B. Fahrmeir et

al. [?, Seite 59 �] die Abschnitte zu empirischen Quantilen

nachzulesen.

5.2.2 Bemerkung: Es gilt (wir beginnen mit der zweiten

Bedingung aus der De�nition)

1− λ ≤ P(X ≥ q)

⇔ 1− P(X ≥ q) ≤ λ

⇔ F (q−) = P(X < q) ≤ λ

Dementsprechend ist q ein λ−Quantil der Zufallsvariable
X , falls

F (q) = P(X ≤ q) ≥ λ und

F (q−) = P(X < q) ≤ λ.

5.2.3 Satz: Es sei X eine Zufallsvariable und X ∼ F . Es

sei λ ∈ (0, 1). q ∈ R ist genau dann ein λ-Quantil von X ,

wenn

F (q−) ≤ λ ≤ F (q+) = F (q)

ist.

5.2.4 De�nition: Es sei F eine Verteilungsfunktion. Dann



heiÿt (0, 1) ∋ λ 7→ q+(λ) mit

q+(λ) = inf{q ∈ R : F (q) > λ}

= sup{q ∈ R : F (q) ≤ λ}

die obere Quantilsfunktion von F und (0, 1) ∋ λ 7→
q−(λ)

q−(λ) = sup{q ∈ R : F (q) < λ}

= inf{q ∈ R : F (q) ≥ λ}

die untere Quantilsfunktion von F .

Insbesondere imRisikomanagement nennt man die unte-

re Quantilsfunktion auch Verallgemeinerte Inverse und

schreibt

F←(λ) = q−(λ)

5.2.5 Bemerkung: Wie sieht die Menge A := {q ∈ R :

F (q) ≥ λ} aus? Wenn q1 ∈ A ist und q2 > q1 gilt, dann ist

F (q2) ≥ F (q1) ≥ λ. Also ist auch q2 ∈ A. Also ist A ein

Intervall der Form (z,∞) oder der Form [z,∞). In der Tat

hat das Interval wegen der von-rechts-Stetigkeit von F die

Form [z,∞). Also gilt

q−(λ) = inf{q ∈ R : F (q) ≥ λ}

= min{q ∈ R : F (q) ≥ λ}.

Wir können also anstatt des In�mums das Minimum bil-



den. Das Minimum wird angenommen: Es gibt also ein q∗

mit der Eigenschaft F (q∗) ≥ λ und für alle q < q∗ gilt

F (q∗) < λ.

Beweis: Angenommen z = inf{q ∈ R : F (q) ≥ λ}, aber
F (z) ≥ λ gilt nicht. Also F (z) < λ. Wir betrachten eine

Folge (qi) mit qi > z und qi → z (eine Folge die von links

gegen z konvergiert). Wegen der Stetigkeit von rechts für

F gilt F (qi) → F (z). Dann muss es � da F (q) < λ �

ein j mit F (qj) < λ und qj > z geben. Das ist jedoch

ein Widerspruch, denn für alle q im Intervall (z,∞) gilt

F (q) ≥ λ.

5.2.6 Satz: Es sei (Ω,F ,P) ein Wahrscheinlichkeitsraum

und X eine reellwertige Zufallsvariable mit Verteilungs-

funktion F .

(1) Dann ist q− nicht-fallend und von links stetig und

(2) q+ nicht-fallend von rechts stetig.

(3) Es gilt q−(λ) ≤ q+(λ).

Beweis: Siehe Föllmer und Schied [10, S. 538f]

5.2.7 Satz: Es sei F eine Verteilungsfunktion. Für jedes

λ ∈ (0, 1) ist die Menge der λ-Quantile das abge-

schlossene Intervall [q−(λ), q+(λ)].

5.2.8 Bemerkung: Wenn F eine strikt monotone stetige



Verteilungsfunktion ist, dann ist für alle λ ∈ (0, 1):

q+(λ) = q−(λ) = F←(λ).

5.2.9 Lemma: Es sei F eine Verteilungsfunktion und

F←(λ) = q−(λ) = inf{x|F (x) ≥ λ} = min{x|F (x) ≥ λ}

die untere Quantilsfunktion bzw. eine Verallgemeinerte

Inverse von F . Dann gilt für x ∈ R, λ ∈ (0, 1)

F (x) ≥ λ⇔ x ≥ F←(λ).

Beweis (Siehe Henze [18, 151]): Für ⇒ müssen wir nur

bemerken, dass x̃ = F←(λ) = min{x|F (x) ≥ λ} gemäÿ

De�nition das kleinste x mit F (x) ≥ λ ist. Also x ≥ x̃ =

F←(λ).

Für ⇐ nehmen wir an, dass x ≥ F←(λ) = x̃ gibt, aber

F (x) < λ ist. Wir betrachten eine Folge (xi) mit xi > x

und xi → x. Wegen der Stetigkeit von rechts von F gilt

F (xi) → F (x). Aus der Konvergenz F (xi) → F (x) und

F (x) < λ folgt, dass es ein xj > x ≥ x̃ mit F (xj) < λ gibt.

Es gäbe also xj > x ≥ F←(λ) mit F (xj) < λ. Das ist aber

ein Widerspruch, denn aus xj ≥ x̃ folgt F (xj) ≥ F (x̃) = λ.

5.2.10 Lemma: Es sei F eine Verteilungsfunktion und



U ∼ Unif((0,1)). Dann hat die Zufallsvariable

X = F←(U)

die Verteilungsfunktion F ; X ∼ F .

Beweis: Siehe Henze [18, 153]. Es gilt gemäÿ des obigen

Lemmas

P(X ≤ x) ≤ P(F←(U) ≤ x) X = F←(U)

= P(U ≤ F (x)) Lemma

= F (x). VF von Unif

▶ Auf der Grundlage des vorhergehenden Lemmas, kann

man Zufallszahlen gemäÿ einer Verteilung F erzeugen, wenn

man Zufallszahlen gemäÿ einer Gleichverteilung erzeuge

kann.

5.2.11 Lemma: Es sei X eine Zufallsvariable mit Vertei-

lungsfunktion F . Ferner sei F stetig. Dann gilt F (X) ∼
Unif([0, 1]). Also für u ∈ [0, 1]

P(F (X) ≤ u) = u

Beweis: Siehe Henze [18, 153].



5.3 Risikomessung

▶ Der Rest des Paragrafen ist als Vertiefung bzw. Anwen-

dung für Risikomanager gedacht und noch arg fragmenta-

risch.

5.3.1 Terminologie und Einführung: Im folgenden stel-

len wir uns vor, dass ein Investor oder Manager das Ri-

siko einer Vermögensposition analysiert. Den Wert dieser

Vermögensposition bezeichnen wir mit V . Wir stellen uns

ferner vor, dass der Wert in mindestens zwei Zeitpunkten

betrachtet wird. Wir verwenden t = 0 für den Zeitpunkt

zu dem der Vermögenswert �x und bekannt ist. Wir be-

zeichnen diesen Wert mit V0. Den Wert V der Vermögens-

position zu einem zukünftigen Zeitpunkt sehen wir als eine

Zufallsvariable an, dessen Wert uns für den Zeitpunkt t = 1

interessiert. Wir verzichten manchmal bei der Variable V

für den Zeitpunkt t = 1 auf den Index, d.h. wir schreiben

einfach V anstatt V1. Wir untersuchen meistens nicht V ,

sondern die Veränderung G = V − V0 oder den Verlust
L = V0 − V . Trotzdem sprechen wir vom Value at Risk

der Vermögensposition. G bezeichnet einen Gewinn (der

natürlich auch negativ sein kann). Da wir Risikonanalyse

betreiben, werden wir � der Literatur folgenden � oft die

Variable Verlust L = −G betrachten.

5.3.2 De�ntion: Es sei V ein Vermögenswert und G =

V −V0 und L = −G. Dann ist derValue-at-Risk (V@R)



von V zur Risikotoleranz λ (eine kleine Zahl, z.B. λ =

0.01) die reelle Zahl

V@Rλ(G) = −q+FG(λ)

= q−F−G(1− λ)

= q−FL(1− λ).

Wenn wir Verluste betrachtet (α nahe 1, z.B. α = 0.99)

V@Rα(L) = q−FL(α)

= F←L (α)

= inf{x|FL(x) ≥ α}

= min{x|FL(x) ≥ α}

dabei heiÿt α das Sicherheitsniveau (Kon�denzniveau).

Die Abbildung

F←(λ) = inf{x|F (x) ≥ λ} = min{x|F (x) ≥ λ}

die Verallgemeinerte Inverse von F

5.3.3 Satz: Es gilt

V@Rλ(G) = inf{m |P(G +m < 0) ≤ λ}.

bzw.

V@Rα(L) = inf{m|P(L−m > 0) ≤ 1− α}



5.3.4 Bemerkung: (1) Wir reden vom Value at Risk von

V , obwohl die De�ntion auf G bzw. L Bezug nimmt. Wir

werden auch vom Value at Risk von G oder von L spre-

chen. Gemeint ist das negative des oberen λ-Quantil der

Zufallsvariable G bzw. das untere α = (1− λ)-Quantil des
Verlustes L.

(2) Der Value at Risk wird in den Einheiten gemessen, in

denen die Zufallsvariable G gemessen wird, d.h. in der Re-

gel in Geldeinheiten.

(3) Typischerweise wird das für die Risikonanalyse relevan-

te λ-Quantil q+FG(λ) von G negativ sein.

(4) Der Value at Risk ist wegen der Multiplikation mit -1

so de�niert, dass er die Grundlage für eine Kapitalanforde-

rung ist; das wird weiter unter noch verdeutlicht.

(5) Wenn man anstatt des Zuwachses G die Verlustvariable

L betrachtet, dann sind für den Übergang drei Anpas-

sung nötig: (i) Anstatt der oberen Quantilsfunktion be-

trachtet man die untere Quantilsfunktion. (ii) Anstatt der

Risikotoleranz λ berachtet man das Sicherheitsniveau

α = 1− λ. (iii) Die Multiplikation mit −1 entfällt.

(6) Es ist G + m = −L + m. Also ist G + m < 0 ge-

nau dann, wenn m < L. Wenn wir m als Eigenkapital

au�assen, dann erkennen wir, dass V@Rλ(G) der kleinste

Eigenkapitalwert ist, der ausreicht eine Insolvenz � hier de-

�niert als Verluste gröÿer als das Eigenkapital � mit Wahr-



scheinlichkeit λ zu vermeiden. Man kann also den V@R im

Kontext der Eigenkapitalregulierung unmittelbar an-

wenden. Der V@R ist auch aus diesem Grund populär.

5.3.5 Beispiel: Es sei G ∼ N(µ, σ2) Normalverteilt und

die Risikotoleranz λ ∈ (0, 1).

V@Rλ(G) = −E(G)− Φ−1(λ) · σ (5.1)

= −µ− Φ−1(λ) · σ (5.2)

Für λ = 0.01 erhalten wir Φ−1(0.01) = −2.33, so dass

V@Rλ(X) = −µ+2.33 ·σ. Für λ = 0.0001 ist V@Rλ(X) =

−µ + 3.09 · σ. Praktisch: Wenn wir den Erwartungswert

und die Varianz von X geschätzt haben und die Annahme

der Normalverteilung angemessen ist, dann können wir für

den Fall einer Normalverteilung den V@R leicht ermitteln.

5.3.6 Satz: Der Vermögenswert V sei eine Zufallsvaria-

ble und V0 ̸= 0 eine reelle Zahl. Ferner sei R = V−V0
V0

eine

Zufallsvariable mit endlicher Varianz σ2 und Erwartungs-

wert µ und die Verteilungsfunktion FRsz der Zufallsvariable

Rsz = R−µ
σ sei strikt monoton steigend und stetig. Dann

gilt

V@Rλ(V ) = −(µ + σ · F−1Rsz(λ))V0.

Beweis: Da die Verteilungsfunktion annahmegemäÿ strikt

monoton steigend und stetig ist gilt für den V@R die Glei-



chung

λ = P (V − V0 ≤ −V@Rλ(V ))

Dann folgt

λ = P
(
R− µ
σ
≤ −V@Rt,λ(V )

V0σ
− µ

σ

)
= P

(
Rsz ≤ −V@Rt,λ(V )

V0σ
− µ

σ

)
Also

F−1Rsz(λ) = −
V@Rt,λ(V )

V0σ
− µ

σ
⇒ V@Rλ(V ) = −(µ + σ · F−1Rsz(λ))V0

5.3.7 Bemerkung: Der Betrachtungszeitpunkt sei τ − 1.

Wir wollen eine Risikoeinschätzung für τ ermitteln. In der

Praxis geht man regelmäÿig so vor.

i.) Zunächst erstellt man für die Rendite ein Zeitreihenmo-

dell der Form

Rt = µt + σtzt, t ∈ Z,

wobei µt = Et−1(Rt),Vt−1(Rt) = σ2t . Ferner wird angenom-

men, dass (zt) ∼ iid(0, 1) mit Verteilungsfunktion FRsz ist

((zt) ist also striktes weiÿes Rauschen).

ii.) Wir verwenden den Satz (5.3.6) und schätzen den ak-

tuellen Value at Risk mit

V@Rλ,τ (V ) = −(µτ + στ · F−1Rsz(λ))Vτ−1.



Bei dieser Methoden muss man also zwei statistische Pro-

bleme lösen:

� Ein Zeitreihenmodell Rt = µt + σtzt schätzen; min-

destens muss man µt und σt schätzen.

� Die Verteilungsfunktion FRsz schätzen.

5.3.8 Bemerkung: Value at Risk ist nicht unumstritten.

Zwei Eigenschaften sind problematisch:

� V@R ist im Allgemeinen nicht sub-additiv.

� V@R beachtet nicht, wie die Verteilung von X links

von V@R gestaltet ist.

5.3.9 Behauptung: Es seiX eine Zufallsvariable mit Ver-

teilungsfunktion F = FX . Dann gilt

E(X) =

∫
XdF =

∫ 1

0

F←(u)du.

Beweis: (den Beweis können wir eigentlich noch nicht wür-

digen, da wir Integration bezüglich dF und den Umgang

mit solchen Lebesgue-Stieltjes-Integralen noch nicht ken-

nen).

Es sei U eine Zufallsvariable mit U ∼ Unif((0,1)). Dann

hat (auch) die Zufallsvariable Y = F←(U) die Verteilungs-



funktion F . Also gilt

E(X) =

∫
Y dF

=

∫
F←(U)dFU

=

∫
F←(u)du.

5.3.10 Beispiel:Wir betrachtenX ∼ Bernoulli mit Bild(X) =

{−b, a} für a, b > 0 und P(X = a) = p. Dann ist für

λ ∈ (0, 1)

F←(λ) =

{
−b falls λ ≤ 1− p
a falls λ > 1− p

Es gilt einerseits

E(X) = p a− (1− p)b.

Andererseits∫
F←(u)du =

∫ 1−p

0

(−b)du +
∫ 1

1−p
adu

= (−b)(1− p) + a(1− (1− p))

= (−b)(1− p) + a p

= p a− (1− p)b.

5.3.11 Bemerkung: Es sei X eine Zufallsvariable mit

strikt monoton wachsender C1-Verteilungsfunktion F und

f = F ′. Dann ist F invertierbar. Wir betrachten die Sub-

stitution u = F (x), x = F−1(u) und verwenden die Sub-



stitutionsregel der Integration du = F ′(x)dx = f(x)dx

E(X) =

∫
xf (x)dx =

∫
F−1(u)du.

5.3.12 De�nition: Es sei L eine Zufallsvariable mit L ∼
F und E(|L|) <∞. Wir de�nieren

ESα(L) =
1

1− α

∫ 1

α

F←(u)du

TVaRα(L) = E(L|L > F←(α))

ES steht für Expected Shortfall und TVaR für Tail-

Value-at-Risk.

▶ Die folgende Bemerkung stellt Resultate über den Zu-

sammenhang zwischen ES und TVaR zusammen. TVaR ist

anschaulicher, jedoch nicht sub-additiv. ES ist sub-additiv.

5.3.13 Bemerkung (McNeil et al. [?, Seite 283]): Es

sei L eine Verteilungsfunktion und L ∼ F . Dann gilt

ESα(L) =
1

1− α
E
[
[L− F←(α)]+

]
+ F←(α)

bzw.

ESα(L) =
1

1− α
[
E
[
1L>F←(α) · L

]
+ F←(α)(1− α− P(L > F←(α)))

]
= E(L|L > F←(α)) · γ + F←(α) · (1− γ)

= TVaRα(L) · γ + VaRα(L) · (1− γ).



Dabei ist

γ =
P(L > F←(α))

1− α

=
1− P(L ≤ F←(α))

1− α
=

1− F (F←(α))
1− α

.

Ferner gilt

E
[
[L− F←(α)]+

]
= E

[
1L>F←(α) · L

]
− F←(α) · P(L > F←(α)).

Wenn FL an der Stelle F←(α) stetig ist, dann gilt

ES = E(L|L > F←(α)) = TVaR.

Beweis: Wir beachten

1

1− α
E
[
[L− F←(α)]+

]
=

1

1− α

∫ 1

0

[F←(u)− F←(α)]+ du

=
1

1− α

∫ 1

α

[F←(u)− F←(α)]+ du

=
1

1− α

∫ 1

α

F←(u)du− F←(α)

1− α

∫ 1

α

1 du

=
1

1− α

∫ 1

α

F←(u)du− F←(α).

Also

ESα(X) =
1

1− α

∫ 1

α

F←(u)du

=
1

1− α
E
[
[L− F←(α)]+

]
+ F←(α)



Weiterhin beachten wir

E
[
[L− F←(α)]+

]
= E

[
1L>F←(α) · (L− F←(α))

]
= E

[
1L>F←(α) · L

]
− E

[
1L>F←(α) · F←(α)

]
= E

[
1L>F←(α) · L

]
− F←(α) · P(L > F←(α))

Also weiterhin

ESα(X) =
1

1− α
E
[
[L− F←(α)]+

]
+ F←(α)

=
E
[
1L>F←(α) · L

]
− F←(α) · P(L > F←(α))

1− α
+ F←(α)

=
E
[
1L>F←(α) · L

]
− F←(α) · P(L > F←(α))

1− α
+ F←(α)

=
E
[
1L>F←(α) · L

]
− F←(α)P(L > F←(α)) + (1− α)F←(α)

1− α

5.3.14 Bemerkung: Man kann den ES als Erwartungs-

wert einer Zufallsvariable eines zwei-stu�gen Experiments

au�assen: Zunächst mit Wahrscheinlichkeit 1 − γ der �xe

Wert F←(α) oder mit Wahrscheinlichkeit γ die Zufallsva-

riable L mit Verteilung unter der Bedingung L > F←(α).

Dann erhalten wir den Erwartungswert

ES = γ · E(L|L > F←(α)) + (1− γ) · F←(α)

mit

γ =
P(L > F←(α))

1− α
.



5.3.15 De�nition und Behauptung (Rockafellar und

Uryasev [?, Seite 1449]): Es sei F eine Verteilungsfunk-

tion. Wir de�nieren

F α-Tail(x) =

{
0 x < F←(α)
F (x)−α
1−α x ≥ F←(α)

F α-Tail(x) ist eine Verteilungsfunktion.

5.3.16 Satz (Rockafellar und Uryasev [?, Seite 1448]):

Es sei L eine Verteilungsfunktion und L ∼ F . Es gilt

TVaR =

∫
LdF α-Tail

= E(L|L im α-Tail).

5.3.17 Beispiel: Es sei Bild(L) = {..., 2, 3, 4} mit P(L =

2) = P(L = 3) = P(L = 4) = 0.02. Es sei α = 0.95.

Dann ist F←(α) = 2. Es ist P(L > F←(α)) = 0.96 und

P(L = F←(α)) = 0.02.

Dann gilt einerseits∫
LdF α-Tail = 2 · 0.96− 0.95

1− 0.95
+ 3 · 0.98− 0.96

1− 0.95
+ 4 · 1− 0.98

1− 0.95

= 2 · 0.01
0.05

+ 3 · 0.02
0.05

+ 4 · 0.02
0.05

= 2 · 1
5
+ 3 · 2

5
+ 4 · 2

5
=

2 + 6 + 8

5

=
16

5
= 3.2



Andererseits gilt

F←(u) =


4 für 0.98 ≤ u

3 für 0.98 ≤ u < 0.96

2 für 0.94 ≤ u < 0.96

... ... ...

Also

1

1− α

∫ 1

0.95

F←(u)du

=
1

0.05

(
2[x]0.960.95 + 3[x]0.980.96 + 4[x]10.98

)
=

1

0.05
(2 · (0.96− 0.95) + 3 · (0.98− 0.96) + 4 · (1− 0.98))

=
1

0.05
(2 · 0.01 + 3 · 0.02 + 4 · 0.02) = 0.16

0.05

= 3.2

Es gibt noch eine dritte Möglichkeit TVaR berechnen. Es

ist

γ =
P(L > F←(α))

1− α
=

0.04

0.05
=

4

5



und weiterhin

(1− γ) · F←(α) + γ · E(L|L > F←(α))

=
1

5
· 2 + 4

5
·
(
3 · P(L = 3)

P(L > 2)
+ 4 · P(L = 4)

P(L > 2)

)
=

1

5
· 2 + 4

5
·
(
3 · 0.02

0.04
+ 4 · 0.02

0.04

)
=

2

5
+

4

5
·
(
3 · 2

4
+ 4 · 2

4

)
=

2

5
+

4

5
·
(
6

4
+

8

4

)
=

2

5
+

4

5
·
(
14

4

)
=

16

5

= 3.2
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