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1 Grundlegende Ergebnisse im

Basismodell

Agenda: Entwickelt wird ein Rahmen fiir die relative
Wertpapierbewertung. Wir betrachten arbitragefreie (Modell-
)Finanzmérkte und entwickeln insbesondere das Risikoneu-
tralbewertungsprinzip und die beiden Hauptsatze der Wert-

papierbewertung.

Was soll man sich vorstellen” Wir stellen uns eine Finanz-
mathematikerin vor, die auf rationaler Basis eine ihr vor-
gelegtes Finanzprodukt bewerten will. Die Preise anderer
Finanzprodukte kann die Finanzmathematikerin beobach-
ten. Mit Blick auf die anderen Finanzpreise, welcher Preis

ist rational fiir das vorgelegte Finanzprodukt.

Ein Finanzmathematiker ist Spezialist fiir ein Wertpapier.
Er fragt sich, ob der Preises seines Wertpiers mit den Prei-
sen anderer Wertpapiere konsistent ist oder ob eine Fehl-

bewertung vorliegt ......



1.1 Definitionen

1.1.1 Definition /Spezifikation: Das Ein-Perioden-Fi-
nanzmarktmodell (EPFMM) ist durch die folgenden

Angaben definiert (spezifiziert):
o Es gibt zwei Zeitpunkte T = {to,;}.

In t = ty kauft der Anleger Wertpapiere und legt
Geld am Geldmarkt an (der Anleger hat Ausgaben).
In t = t; ergeben sich die Auszahlungen/Endwerte
der Wertpapieren an den Anleger.

Fiir die Entwicklung des Modells sind die konkreten
Zeitpunkte von ty und ¢y irrelevant. Deshalb normie-
ren wir den Zeitstrahl t) = 0 und ¢t; = 1. Wir fassen
to = 0 als Entscheidungszeitpunkt auf. In t = £, rea-
lisiert sich das Ergebnis des Zufallsexperiments und

die damit die Endwerte der Anlageformen.

e Essei K € N. Es gibt K Zustande €2 = {wy, ..., wk }
sowie ein Wahrscheinlichkeitsmaf P auf (€2, P(€2)) mit
Pr = P(wk) = P({wk}) > 0 fiir £ = I..., K.

Wir stellen uns vor, dass in ¢ = 1 einer der K Zu-

stande mit Wahrscheinlichkeit p; eintritt.

Ein solches Wahrscheinlichkeitsmak P auf einem end-
lichen messbaren Raum (€2, P(£2)) ist bekanntlich durch
die Angabe der Zahldichte p, € (0,1),k = 1,.... K



definiert. Die Wahrscheinlichkeiten aller anderen Er-

eignisse ergeben geméf

P(A)= > p ACQ
k:wreA
Am Rande: In der Wahrscheinlichkeitstheorie muss
nicht unbedingt jede Wahrscheinlichkeit pj. strickt gro-

er Null sein.

e Anleger haben Zugang zum Geldmarkt. Wenn ein
Anleger in t = 0 eine Geldeinheit (GE) auf das Geld-
marktkonto einzahlt, dann erhélt er in £ = 1 die Aus-
zahlung R > 0. Mit r = R — 1 > —1 bezeichnen wir

den Geldmarktzinssatz.

Wir setzen nicht voraus, dass Zinsen nicht-negativ
sind. Wir bendtigen lediglich » > —1, denn wir wer-
den regelméafig beim diskontieren durch 1 + r divi-
dieren. Wir setzen also stets » > —1 bzw. R > 0

voraus.

e Anleger konnen zum Zeitpunkt ¢t = 0 in N € N
Wertpapiere investieren; diese Wertpapiere nennen

wir Basiswertpapiere[] Die Preise der Wertpapiere

1Zusammen mit dem Geldmarkt bilden die Wertpapier die Basisanlagemoglich-
keiten des Modells.



in t = 0 fassen wir in einem Vektor

/st

So

S5

zusammen. Die Wertpapierpreise in ¢ = 1 sind Zu-

N
S
|

fallsvariablen mit Realisierungen S7(wy,) € R,k =

1,..K,j=1,...N.

Wir konnen die Realisierungen der Wertpapierpreise

in einer Matrix zusammenfassen

[ SHwr) o SV wr) SV () )

Sllen) o ST ST | e vy

\Sll(wK) S{V_l(w;{) S{V(WK))

» Vorgegeben (exogen) werden also die folgenden Werte: r,
S, 87 (wy.) sowie die Wahrscheinlichkeiten py; diese Werte

sind exogen.

] ] S
1 7

t = 0: WP werden gekauft & t =1 w e Q wird gezogen
Einzahlung am GM getatigt Auszahlungen finden statt

Abbildung 1.1.1: Das Schema zeigt die Zeitschiene des
EPFMMs



1.1.2 Beispiel: Ein sehr kleines EPFMM wird durch die
folgende Spezifikation definiert. Es sei r = % = 0.11, Sy =
5, S1(wy) = %O, S1(ws) = %. P = %,pg = i. Wenn der An-
leger 5 GE auf das Geldmarktkonto einzahlt, dann ergibt
sich in ¢ = 1 eine sichere Zahlung von 590 5 (1 + %); der
Bruttozins ist demnach R = 150. Wenn der Anleger fiir 5 GE
das Wertpapier kauft, dann ergibt sich eine unsichere Aus-
zahlung Mit Wahrscheinlichkeit p; betrigt die Auszahlung

und mit Wahrscheinlichkeit py ist die Auszahlung < A Die
erwartete Auszahlung ist E(S;) = 284142 = 2. In beiden
Anlagevarianten setzt der Investor 5 GE. Bei der Anlage
am Geldmarktkonto ergibt sich eine sichere Zahlung von

%0. Wenn er das Wertpapier kauft, dann ist Auszahlung

eine Lotterie mit Erwartungswert %.

Bei der Anlage am Geldmarkt ist die Rendite %. Bei der
60 _ 45

Anlage in das WP1 ist die Rendite 3459 = % = % oder

40 45
22 = 2—55 = —é. Die erwartete Rendite fiir den Geld-
g

markt ist (natiirlich) ¢ Fiir das WP1 ist die erwartete
31 9 1 8 1
Rendite ¥ +4 9 = 55— 3 = 36 8 und es ist 36 . Die
Anlage in das Wertpapier ist zwar rlskant hat aber dafur
eine hohere erwartete Rendite. Der Anleger wird sozusagen
fiir die Ubernahme des Risikos kompensiert. Man nennt die
8 4

Differenz 5z — o5 = RlSlkopramle.

1.1.3 Bemerkung: i.) Wir verwenden fiir Wertpapierprei-
se S/ (wy,) die folgenden Konventionen. Der Subindex ¢

von S/ (wy,) gibt den Zeitpunkt an. Der Superindex j von

Auch als Dezimalzahl mit
Komma ....

Auszahlung oder besser
Zahlung an ....



Sg (wr) gibt die Wertpapiernummer an. Das Argument wy,

von S/ (wy) gibt den Zustand an.

ii.) Eine Zufallsvariable X : 2 — R mit einen endlichen

Definitionsbereich 2 = {wy,...,wx} werden wir mit dem

Vektor

X(wr)
X —
X(wk)

identifizieren. Wir werden also wahlweise von der Zufalls-
variable X : 2 — R, vom Vektor X € R* oder vom
Zahlungsprofil X € R¥ sprechen. Missverstandnisse kon-

nen bei genauer Betrachtung nicht entstehen.

Wir kénnen je nach Perspektive — Vektoren bzw. Zufallsva-
riablen — Resultate der Linearen Algebra bzw. der Wahr-

scheinlichkeitstheorie verwenden.

iii.) Wir haben die Anlageform mit Auszahlung R als Geld-
marktkonto interpretiert; R ist dann die Bruttoverzin-
sung (also einschliefslich der Riickzahlung in ¢ = 1 des in
t = 0 eingezahlten Betrags). Alternativ kann man Geld-
marktanteile betrachten, deren Preis im Betrachtungs-
zeitpunkt auf Ry = 1 normiert ist, d.h. die im Betrach-
tungszeit pari emittiert werden. Die garantierte Auszah-
lung in t = 1 ist Ry = R. In diesem Fall ist der Preis bzw.
die Auszahlung R; = Rint = 0 bekannt. Geldmarktanteile
haben also einen Preis der sich in Mehrperiodenmodellen

indern kann, aber diese Anderung ist anders als bei den



riskanten Wertpapieren schon vorab bekannt. noch ausfiihilicher ...

Wir haben die Anlageform Geldmarkt aus zwei Griinden

extra modelliert: (1) Diese Anlageform stellt die risikolo-  wumeise .. Gela ..
se Anlageform dar (risikolos ist die Anlageform jedenfalls Getanhten
fiir eine Periode). (2) Diese Anlageform dient typischerwei-

se als Standard-Numeriare; was das bedeutet werden

wir spater erlautern.

1.1.4 Definition: Eine Handelsposition (Handelsstra-
tegie, Portfolio) wird durch einen Vektor h = (hq, hy, ..., hy)' €

RN+1 fepfasentlel"t Dabel bGZGlChnet ho deﬂ aln Geldmafkt Wir reservieren h fiir Han-

delspositionen.
investierten/gelichenen Betrag in Geldeinheiten und h;, j =
1,..., N die Anzahl der Stiicke des Wertpapiers mit der
Wertpapiernummer j. Wir werden die fiir uns im folgen-

RN+ oft weglassen, d.h.

den selbstverstandliche Angabe €
wenn nichts anderes angeben ist, dann ist ein h ein Vektor

des RV*! der eine Handelsposition reprisentiert.

Wenn wir Geldmarktanteile betrachten, dann entspricht
ho dem Bestand der Geldmarktanteile, die in der Einheit

Stiicke gemessen werden.

1.1.5 Bemerkung;: i.) Es sei h eine Handelsposition und
j €{1,2,..,N}. Da wir h; € R zulassen, lassen wir ins-
besondere auch h; < 0 zu; das sind sogenannte Leerver-

kaufe.

Dieser Text ist nicht der richtige Ort, um die teilweise



komplexen institutionellen Details von Leerverkdufen zu er-
lautern. Niitzlich ist aber die folgende Skizze: Wenn man
Wertpapiere, die man nicht besitzt, verkaufen will, dann
borgt man sich diese. Die Leihe wird von einem Vermittler
organisiert. Man verkauft dann die geborgten Wertpapiere
am Wertpapiermarkt. Am Ende der Leihfrist kauft man die
Wertpapiere am Wertpapiermarkt und gibt sie zuriick. Der
Besitzer, dessen Wertpapiere geborgt und verkauft werden,
bemerkt diesen Vorgang nicht. Wahrend der Leihfrist an-
fallende Dividenden bzw. Coupons muss der Leerverkaufer

an den Inhaber des gelichen Wertpapier zahlen.

ii.) Wir behandeln die Fille hy < 0 (man leiht sich Geld)
und hy > 0 (man verleiht Geld) nicht separat als zwei Félle
mit unterschiedlichen Zinsen, sondern einheitlich hy € R.
Die Verzinsung fiir eine Anlage am Geldmarkt und fiir die
Kreditaufnahme auf dem Geldmarkt sind also geméf An-

nahme gleich.

iii.) Die Annahme h; € R,j = 1,..., N bedeutet, dass wir
die beliebige Teilbarkeit der Wertpapiere unterstellen.
Fiir die mathematische Analyse ist diese Annahme wich-
tig. Insbesondere konnen wir Methoden und Ergebnisse der

Linearen Algebra des R” anwenden.

iv.) Die Wertpapierpreise Sg und der Zins r sind exogen.
Das bedeutet insbesondere: Selbst wenn sich Investoren fiir
ein sehr grofes h (sehr grofe Nachfrage bzw. Angebot)

entscheiden, dndern sich die Preise bzw. der Zins nicht.

..... insb Quelle zu den
inst Details

Broker ....7

Preisnehmer .... Ein Anle-
ger miisste seine Nachfra-
ge dosieren ....



1.1.6 Definition: Wir definieren die Auszahlungsma-

trix (fiir alle Anlagealternativen und alle Zusténde) des
EPFMM als Kann man oBdA

unterstellten, dass

(R Sll(wl) S{V—l(wl) S (Wl)\ die Spalten von A

N
1
R SHwy) ... SV Y wy) SN(ws)

linear unabhingig

c M(K,1+ N1,

\R Silwk) . S Hwk) S{¥(wx) )

Konventionen:
bei einer
M(K,1 + N;R)
Matrix gibt es eine
Spalte 0. ......

In einer Spalte
S (w)
S (wk)

stehen also die Auszahlungen einer Anlageform und in einer
Zeile

(R Slw) o S5¥w)

stehen die Auszahlungen der N + 1 Anlageformen im Zu-
stand wy. Die Auszahlung bzw. den Endwert in ¢t =1
des Portfolios h definieren wir als

VI — Ah.

2Warum ist das eine Definition und keine Schlussfolgerung? Diskutieren Sie!
Denken Sie insbesondere an Meniis in Restaurants.



Ausgeschrieben haben wir also:

V¥w)) = Rho+ Si(wi)hi 4 ...+ SY (wi)hy
V?(wg) = Rho+ Sll(WQ)hl + ...+ S{V(wg)h]v

V{I(WK) = Rhoy + S%(WKVM + ...+ S{V(WK)hN.

Wir beachten, dass VI je nach Perspektive eine Zufallsva-
riable mit Werten in R bzw. ein Vektor in R”* ist. Wenn

wir VI als Zufallsvariable auffassen, dann schreiben wir

VI = hoR+ St + ...+ hySY baw.
V(W) = hoR + I SHw) + ... + hy SV (w).

anstatt des Matrixprodukts Ah.

Diese Definitionen bedeuten, dass wir lineare Preise unter-

stellen. Es gibt also keine Rabatt fir Menis.



Ferner definiert (beachte Ry = 1)
(Ro\
1

Vbh = Roho + S&hl + ...+ SéVhN =h'

st
([ o \
h

1

s

)

—heS;=S;eh

den AnfangSWQI‘t deI' HandelspOSitiOD OdeI‘ den An— erweiterte Auszahlungma-

trix?

schaffungswert der Handelsposition h in ¢t = 0 (also
den Wert des Portfolios in ¢ = 0 bzw. die Anschaf-

fungskosten des Portfolios in ¢ = 0), wobei wir
_ 1 R
Sy = = ! c RN+
So So

Wir werden gelegentlich Ry = 1 angeben, um daran zu

definieren.

erinnern, dass wir diese Anlageform als Geldmarktkonto



oder als Geldmarktanteile interpretieren kénnen.

Manchmal ist die separate Behandlung/Notation des Geld-
marktkontos lastig. Wir verwenden deshalb auch die Nota-
tionnglundS?:R{:R

» Was wollen Anleger? Anleger bevorzugen ceteris paribus
einen kleinen Wert VJ* und ceteris paribus groke Werte fiir
V{‘Z Wir werden uns spéter genauer mit Préferenzen zu

beschéaftigen.

1.1.7 Definition: Es sei h € R¥*! eine Handelsposition.
Wir definieren die diskontierte Auszahlung der Han-

delsposition h:

Vh
v = L
! R
Ausgeschrieben gilt:
% Vh wk)
(V) () =
o Rho + Sll(wk)hl + S{V(wk)h]\[
— 0 )
Sl(wk) S (wk)
—h L hy .+ hy.
0+ L u + ot ) N

1.1.8 Definition: Es sei h eine Handelsposition. Dann



heillt

Gh _ ‘/'1h o ‘/Oh
= Rhy+ Sthy+ ...+ S hy — hg — h1Sy — ... — hxS
=rhy+ (Sll — S%)hl + ...+ (S{V — S(]]V)h]\f

Gewinn der Handelsposition h. G ist natiirlich nicht not-
wendigerweise nicht-negativ! Gewinn-Verlust wire dem-

nach die bessere Bezeichnung.
Es ist also G®(w) = VR (w) — V! fiir w € Q.
Der diskontierte Gewinn der Handelsposition h wird

durch

1

* h,x
A

‘/ih_%h

definiert. Vorsicht der diskontierte Gewinn nicht der
Gewinn diskontiert, denn V" wird nicht diskontiert.
Genauer wire die Formulierung Gewinn der diskontierten

Werte, aber die klingt umstéandlich.
Wenn die Anschaffungskosten Null sind, dann nennen wir
Gh _ V'lh7 ‘/E)h — 0

einen kostenlosen Gewinn und

h
Gh,* _ Vh,* . V_l
- V1

-V =0

einen kostenlosen diskontierten Gewinn.



1.1.9 Bemerkung: Es sei h € RY*! eine Handelspositi-
on. Wenn man V" als Vektor auffasst, dann muss man et-

was aufpassen. Es ist dann streng genommen G = V[ —
V=V — V21, wobei

(1)

1

\!/
Vit ist eine reelle Zahl und Vi = Ah ein Vektor. Eigentlich
ist V2 — V2 (Vektor minus Skalar) nicht definiert.

Wir werden in der Tat ofter Anlass haben von einem Vektor

v einen Skalar o abzuziehen. Wir definieren

v—-—oa:.=v — la.

1.2 Arbitrage

1.2.1 Definition: Eine Handelsposition h heifst Arbitra-

gemoglichkeit oder einfach Arbitrage, wenn
i.) V=0 und
i) 0#£VE>0

gilt. Eine Arbitragemdglichkeit hat also einerseits Anschaf-

fungskosten von Null und hat andererseits eine nicht-negative



vom Nullvektor verschiedene zukiinftige Auszahlung. Zu

schon, um wahr zu sein.

» Wir werden im Folgenden sehr ausfiihrlich und
genau charakterisieren, unter welche Bedingungen
es keine Arbitrage gibt. Wir betrachten zur Einfiihrung

ein einfaches Beispiel.

1.2.2 Bemerkung: Eine Handelsposition h ist genau dann

eine Arbitrage, wenn

ii.) VB> 0und VP(w) > 0 fiir mindestens ein w € Q.

1.2.3 Satz: Eine Handelsposition h ist genau dann eine

Arbitrage, wenn

i.) VE>0und P(VR > 0) > 0.

» Die Charakterisierung einer Arbitrage geméaf des obigen
Satz ist eigentlich besser, denn sie funktioniert auch fiir
unendliche (nicht-diskrete) €2; vgl. Féllmer und Schied [10]
Seite 5].

1.2.4 Beispiel: Es sei wieder r = %, Sy = 5, Si(wy) =
%0, Si(wq) = %. p1 = %,pz = 411' Gibt es in diesem EPFMM
eine Arbitragemoglichkeit?



Wenn h = (hg, h1)? eine Handelsposition mit Vi* = 0 ist,
dann hg + 5h; = 0. also hg = —5hy. Fiir die Auszahlung

gilt
10 60 h 1044 60y
V"= Ah = 190 490 ') = 190 0 490 :
9 9/ \/u 9o+ 5
B — 25k + Bhy _ i s
— 0. 5h + 2y ~10

Wenn h; = 0 gilt, dann ist V}* = 0. Also keine Arbitra-
gemoglichkeit. Wenn hy > 0 gilt, dann ist Vi (wy) < 0.
Also keine Arbitragemoglichkeit. Wenn hy < 0 gilt, dann
ist V"(wy) < 0. Also keine Arbitragemdglichkeit. Es kann
also in diesem EPFMM keine Arbitragemoglichkeiten
geben.

1.2.5 Beispiel: Es sei diesmal r = %, So =5, Si(wy) =
B Si(ws) = . p1 =2, py = 1. Gibt es in diesem EPFMM

eine Arbitragemoglichkeit?

Essei h = (5, —1)T. Dann ist V* = ho+Sgh; = 5—5-1 = 0.
Fiir die Auszahlung gilt

12 60
< 5 0
h _ _[9 79 _
i=Ah= (2 4_0> <_1> N (m)
9 9 9
Also 0 # VB > 0. Wir haben eine Arbitrage gefunden!

Arbitrageidee: In beiden Zustianden hat die Anlage am

Geldmarkt eine mindestens so hohe Rendite, wie das Wert-



papier. Die Rendite am Geldmarkt betragt in beiden Zu-
standen %. Die Wertpapierrendite ist g in wy; und —% n
wo. Wir (leer-)verkaufen (shorten) das Wertpapier (also
hy = —1) und legen die daraus erhalten Mittel am Geld-

markt an (also hg = 5); das bedeutet h = (5, —1)T.

Im vorhergehenden Beispiel war die Geldmarktrendite nur
%. Im Zustand w; ist die Wertpapierrendite g grofer als
diese Geldmarktrendite und in Zustand ws ist die Wertpa-

pierrendite —% kleiner.

1.2.6 Bemerkung: Fir K = N + 1 = 2 ist es sehr ein-
fach, Arbitragemoglichkeiten — wenn es welche gibt — zu
finden. Wenn die Rendite der riskanten Anlageform in bei-
den Zustdnden mindestens so hoch wie die der Anlage am
Geldmarkt und in einem Zustand hoher ist, dann kauft
man das riskante Wertpapier auf Kredit. Ist andererseits
die Geldmarktrendite in beiden Zustdnden mindestens so
hoch wie die Rendite des riskanten Wertpapiers, dann ver-
kaufen wir das riskante Wertpapier (leer) und legen den

Leerverkaufserlos am Geldmarkt an.

1.2.7 Bemerkung: h ist genau dann eine Arbitragemog
lichkeit, wenn V* = 0, V® > 0 und EF(VE) > 0.

1.2.8 Bemerkung: Fiir h = 0 gilt V® = 0 und V{* = 0.
Deshalb reicht V2 > 0 als Charakterisierung fiir eine Arbi-

trage nicht aus. Andererseits setzen wir bei einer Arbitrage



auch nicht voraus, dass V*(w) > 0 fiir alle w gilt, obwohl
auch das ein Ansatz sein kann (vgl. in Pliska [37, Kapitel

1| das Konzept der dominanten Strategie).

1.2.9 Bemerkung: i.) Gelegentlich findet man die Aus-
sage, dass eine Arbitrage ein risikoloser Gewinn sei. Das
ist aber mindestens missverstiandlich. Wenn ein Anleger die
Position h = (1,0, ..., 0)" wihlt und der Zins r > 0 positiv
ist, dann ist der Gewinn fiir h gleich VR —VE = 14+r—1=
r > 0 risikolos und strikt positiv; aber h ist keine Arbitra-
ge!

ii.) Es gibt genau dann eine Arbitrage, wenn es einen kos-
tenlosen nicht-negativen (in diesem Sinn risikolosen) von

Null verschiedenen Gewinn gibt, d.h. ein h mit

Vg =0
04 VE=G">0.

Das ist so, da V{* = G unter der Vorsetzungen Vj* = 0

1st.

1.2.10 Bemerkung: Fiir den diskontierten Gewinn G** =
Vlh’* — Vb = %Vlh — Vi ist die Geldmarktposition hg irrele-
vant: Wenn h; und h, zwei Handelspositionen mit gleichen
Positionen fiir die riskanten Anlageform h;; = hy;,7 =
1,...,N sind, dann stimmen die Gewinne GM* = Gh2*

tiberein; unabhangig von den Werten h; o bzw. hs .



» Eis gibt einen weiteren Zusammenhang — aufser dem aus
1.2.9 — zwischen Arbitrage und Gewinn, der durch die fol-
genden beiden Behauptungen erkléart wird. Relevant ist da-

bei der diskontierte Gewinn.

1.2.11 Behauptung: Es gibt genau dann eine Arbitra-
ge, wenn es ein h € RV*! mit 0 # G™* > 0 gibt; dabei
ist GM* = SV — V! der diskontierte Gewinn der Han-

delsposition h.

Es gibt also genau dann eine Arbitrage, wenn es einen risi-

kolosen von Null verschiedenen diskontierten Gewinn gibt.

Es sei nochmals darauf hingewiesen, dass die Bezeichnung
diskontierter Gewinn eigentlich irrefithrend ist. Besser wére

Gewinn aus den diskontierten Werten. ......

1.2.12 Behauptung: Ist h = (hy,...,hy)T € RY eine
Handelsposition fiir die riskanten Anlageformen mit 0 #
G™* > 0. Dann ist h' = (ho, h1, ..., hy), ho = —h @ S; eine
Arbitrage.



1.2.13 Bemerkung: Wir beobachten

. 1

Vlh

s — > R
Voh_
Vlh

s — —1>r
Voh

o Vlh_voh>

-
Voh -
vh-yh

Wenn die Renditen

on - der Handelsposition (die unab-
0
héngig von hg ist) in allen Zustdnden mindestens so hoch
wie die Geldmarktrendite und von Null verschieden ist,

dann gibt es eine Arbitrage.

Wir kénnen auch die Uberschussrendite

‘/1h L Vbh
V()h

—r

betrachten. Wenn es eine Position mit einer (unter allen
Umstéinden) nicht-negativen von Null verschiedenen Uber-
schussrendite gibt, dann gibt es eine Arbitarge. Wenn es
also moglich ist unter allen Umstdnden mindestens so gut
wie der Geldmarkt zu sein und in einem Zustand sogar

besser, dann gibt es eine Arbitragef

1.2.14 Satz Es gibt genau dann eine Arbitrage, wenn es
elne h mlt ‘/Oh % 0 Baustelle ......

3An arbitragefreien Finanzmirkten kann man nicht mal den Geldmarkt sicher
schlagen.



Vh—Vh
r#—l - 0 >y

Vo

» Bei Arbitragefreiheit kann es also keine Position geben,
deren Rendite immer mindestens so hoch ist wie die Geld-

marktrendite und in mindestens einem Zustand echt hoher.

1.2.15 Bemerkung Geometrische Interpretation von 0 #
G™* > 0; Ein diskontierter Arbitrage-Gewinn liegt also im
ersten Quadranten (ohne den Nullpunkt). Diese Beobach-

tung wird sich noch als niitzlich erweisen

1.2.16 Bemerkung: Wenn h mit V;* = 0 eine sogenannte
Selbstmord-Handelsposition mit 0 # V! < 0 ist, dann
ist —h eine Arbitrage. Ist h eine Arbitrage, dann ist —h

eine Selbstmord-Strategie.

1.2.17 Bemerkung: Bei Arbitragefreiheit gilt: Wenn h €
RY*L eine Handelsposition mit V* = 0 und V{* # 0 ist,
dann kann V® > 0 nicht gelten. In Beweisen werden wir
das so machen: Wir zeigen (durch Fallunterscheidung)
fiir h € RN mit VI = 0 und V}® # 0 gibt es stets ein j
mit V{?(w;) < 0.

Bei Arbitragefreiheit gilt sogar: Wenn h € RY*! eine Han-
delsposition mit V* = 0 und V{* # 0 ist, dann gibt es 4, j
mit VP (w;) > 0,V (w;) < 0. Wiirde V{*(w;) < 0 fiir alle
i # j und V" (w;) < 0 gelten, dann wire h € RV eine

Baustelle,
scheinlich

anderen Ort

wahr-

an



Selbstmordstrategie. Dann ist —h eine Arbitragemoglich-
keit.

1.2.18 Beispiel: Es sei wieder r = 3, Sy = 5, Si(wy) =

%0, Si(wq) = %. Py = %,pg = }l. Dann gilt Arbitragefreiheit.

Wenn h = (hg, h1)? eine Handelsposition mit Vi* = 0 ist,
dann ist hg+5 hy = 0. Also hy = —5 hy. Fiir die Auszahlung

10
Vvlh _ (_9@) hl
9

VP £ 0 impliziert hy # 0. Also gibt es zwei Fille.

gilt

i.) Wenn hy > 0 gilt, dann ist V*(w;) < 0. Also keine
Arbitragemdglichkeit.

ii.) Wenn h; < 0 gilt, dann ist VB(w;) < 0. Also keine
Arbitragemdglichkeit.

Es kann also in diesem EPFMM keine Arbitragemoglich-

keiten geben.

Wie in der vorherigen Bemerkung angegeben, gibt es im
Fall hy > 0 einerseits einen Zustand mit einer negativen
Auszahlung; namlich 7 = 2. Es gibt aber auch einen Zu-

stand mit einer positiven Auszahlung; namlich j = 1.

1.2.19 Bemerkung: Arbitragemoglichkeiten sind belie-
big skalierbar: Wenn h eine Arbitragemoglichkeit ist, dann



ist fiir alle a > 0 auch a h eine Arbitragemoglichkeit.

1.2.20 Satz: Wenn es eine Handelsposition h € RY*! mit
Vit < 0, V{2 > 0 gibt, dann gibt es eine Arbitragemdoglich-
keit.

1.2.21 Bemerkung: Handelspositionen wie im vorherge-
henden Satz werden in anderen Quellen ebenfalls Arbitra-
gemoglichkeit genannt (so beispielsweise in Duffie [0, Seite
3]). Solche Handelsposition sind noch besser als die Arbi-
tragemoglichkeiten geméak unserer Definition: Man hat den
finanziellen Vorteil schon in ¢ = 0. Man kdnnte diesen Vor-
teil auf dem Geldmarkt anlegen und hétte dann in jeden
Zustand eine positive Auszahlung; also eine starke Arbi-

trage.

» Wir haben bis hierhin viele Aspekte von Arbitrage ge-
sammelt. ...... Redundanzen und etwaige Nichtverwendung

im folgenden nehmen wir in Kauf. ......

1.2.22 Definition: Das EPFMM heifst arbitragefrei, wenn
es keine Arbitrage gibt.

1.2.23 Bemerkung: Wir werden im folgenden Arbitrage-

freiheit als eine plausible und verniinftige Eigenschaft eines



EPFMM auffassen 4

Wenn es eine Arbitrage giabe, dann kdnnte ein Anleger sei-
nen Nutzen — diesen Begriff werden wir formal erst spéter
einfithren — grenzenlos steigern. Ubliche Optimierungspro-
bleme der Portfoliotheorie hitten keine Losung (vgl. Duffie
9, S. 5f]).

Wenn es eine Arbitrage gibe, dann ware zudem die An-
nahme exogener Preise fragwiirdig. Anleger hatten schliefs-
lich Interesse an SEHR grofsen Arbitragepositionen. Es ist
dann plausibel, dass sich Preise so anpassen, dass die Ar-

bitragemoglichkeit verschwindet.

1.2.24 Satz (Law of one price, LOOP): Wenn das
EPFMM arbitragefrei ist, dann gilt das Law of one pri-
ce (LOOP):

V=V = VM =

In Worten: Wenn zwei Positionen identische Auszahlungs-
profile haben, dann miissen sie bei Arbitragefreiheit auch

den gleichen Preis haben.

1Sollte Thnen eine Arbitrage bekannt sein, so wiire es sehr wiinschenswert, wenn
Sie mir diese Position vertraulich mitteilen wiirden. Email an mj &t math-
stat.de



1.3 Risikoneutralwahrscheinlichkeiten

» Es ist einfach eine sichere Auszahlung X (die man in
t = 1 erhalt) zu bewerten (den fairen Wert in ¢ = 0 zu
X

ermitteln). Der faire Preis muss px = 77 sein. Wenn

die Auszahlung riskant ist, dann konnten man versucht
sein, die Formel px = % zur Bewertung zu verwenden.
Die Formel funktioniert sogar, aber mit einen Twist. Der
Twist besteht darin, dass man nicht die Wahrscheinlichkei-
ten p1, po, ..., px nimmt, sondern solche Wahrscheinlichkei-
ten q1, qo, ..., qx, s0 dass die Gleichung stimmt. Das klingt
nach Pippi Langstrumpf (ich mach mir die Welt; widewide
wie sie mir gefillt) oder Freiherr von Miinchhausen (am ei-
genen Schopf aus dem Sumpf ziehen). In der Tat ist die
Erfindung der Risikoneutralwahrscheinlichkeiten ein Ge-
niestreich, der eine neue Welt erschafft: die Q-Welt bzw.
die Risikoneutral-Welt. In dieser Welt kann man, wie wir
sehen werden, grofartige Dinge machen. Die folgenden De-

finition ist von herausragender Bedeutung.

» Bewertung (das erste mal) ...

1.3.1 Definition: Ein Wahrscheinlichkeitsmalfs Q heifst Ri-
sikoneutralwahrscheinlichkeitsmals oder Martingal-

wahrscheinlichkeitsmafs, falls

i) g =Q{wr}) >0firk=1,.., K.



ii.) Fir alle s = 1,..., N gilt

o () - Eotls

—]EQ S qusl wk

Die N Gleichungen kann man mit Matrizen in einer Glei-

chung zusammenfassen:
So = (S})"q

Dabei ist ¢; = q(w;) = Q({w;}) und

StHwr) S (wy) va(wl)\
R R R
SHws) S w) SN (wo)
S* = R R R € M(K,N,R)
KS%(wK) S (wg) va(wK))
R R R

ist die Matrix der diskontierten Wertpapierauszah-

lungen (also ohne eine Spalte fiir den Geldmarkt).

Wir nennen die Wahrscheinlichkeiten g; der Ergebnisse wy

Risikoneutralwahrscheinlichkeiten.

Die Menge aller Risikoneutralwahrscheinlichkeits-

malie bezeichnen wir mit M.

» Natiirlich ergibt sich die Frage, ob (unter welchen Bedin-
gungen) es solche magischen Wahrscheinlichkeiten wirklich

gibt. Wir werden sehen, dass des solche WAhrscheinlichkei-



ten genau dann gibt, es keine Arbitragemoglichkeiten gibt.

Es fiigt sich also alles ganz wunderbar.

1.3.2 Satz: Ein Vektor q € R mit ¢; > 0 fiir alle
t =1, ...., K definiert genau dann eine Risikoneutralwahr-

scheinlichkeitsmaf Q mit Q({w;}) = ¢;, wenn

SO — (A*)Tq

gilt. Dabei ist

(1 Swy) SN (wy) S{%q)\
R R R
| St St Nwa) SN (wy)
A* = R R B | e M(K,N+1,R)
\1 St(wk) SN Hwg) va(wK))
R R R

die Matrix der diskontierten Auszahlungen aller Anlagefor-

1

men und

\s/
der Vektor der Wertpapierpreise (einschlieflich Geldmarkt).

Wir erhalten im Gleichungssystem Sy = (A*)? q eine Glei-
chung je Anlageform: N fiir die N Basiswertpapiere und

eine fiir den Geldmarkt; also insgesamt N + 1 Gleichungen.

Dabei entspricht die Gleichung fiir den Geldmarkt gerade



der Gleichung, dass sich die Wahrscheinlichkeiten zu Eins
addieren. Eine Losung des Gleichungssystem Sy = (A*)!q
ist aber nicht automatisch eine risikoneutrale Zahldichte.

Die Losung muss zudem ¢; > 0,72 = 1, ..., K erfiillen!

1.3.3 Beispiel: i.) Es sei wieder r = é, So =5, Si(wy) =
%0, Si(wsy) = %. P = %,pg = i. Gibt es Risikoneutralwahr-

scheinlichkeiten?

Wir betrachten das lineare Gleichungssystem Sy = (A*)!q,

e

Dieses lineare Gleichungssystem hat die eindeutige Losung
@1 = %7612 = % Wir haben also Risikoneutralwahrschein-

lichkeiten gefunden!

Modelle mit K = 2 und N = 1 kann man natiirlich mit
Bleistift und Papier 16sen. Wenn man aber mit die Para-
meter variieren mochte, dann bietet sich computergestiitz-
te Losung an. Auf www.mathstat.de/fima werden R und

Python Skrite angeboten. ......

Wl

ii.) Es sei jetzt r =

_ 3 _ 1
P1=3,P2 = 3-

Wir betrachten wieder Sy = (A*)’q; diesmal erhalten wir


www.mathstat.de/fima

das Lineare Gleichungssystem

L) (0)-()

Dieses lineare Gleichungssystem hat die eindeutige Losung
q1 = 1,go = 0. Diese Werte bilden jedoch keine Risikoneu-
tralwahrscheinlichkeiten, denn ¢» = 0. Es kann keine Risi-
koneutralwahrscheinlichkeiten geben, denn die miissten das
obige lineare Gleichungssystem losen. Dieses lineare Glei-
chungssystem hat aber nur die eine Losung ¢t = 1,¢o = 0

und die definieren keine Risikoneutralwahrscheinlichkeiten.

Fiir die Spezifikation i.) gab es keine Arbitragemoglich-
keit aber es gab Risikoneutralwahrscheinlichkeiten. Fiir die
Spezifikation ii.) gab es Arbitragemdoglichkeiten aber es gab
keine Risikoneutralwahrscheinlichkeiten. Wir werden gleich

sehen, dass das kein Zufalls ist.

1.3.4 Bemerkung: Wenn Q € M ein Risikoneutralwahr-

scheinlichkeitsmals ist, dann gilt fiir alle Basiswertpapiere

| qi
=R ().
& (R)

Wir erhalten also den aktuellen Wert als Erwartungswert
des diskontierten zukiinftigen Wertes. Es ist sehr wich-
tig, dass diese Identitat mit P (anstatt mit Q) im Allge-
meinen nicht gilt. Im Allgemeinen ist S # E* (Sj/R).

Wiéren Anleger risikoneutral (auf die formale Definition



von risikoneutral miissen wir noch warten), dann wiirde
Si = EF (S}/R) gelten. Dementsprechend ist die Formu-
lierung populér, dass in der Q-Welt Risikoneutralitat gilt.
Es ¢ibt aber nur eine Welt; die P-Welt. Die Q-Welt ist eine

genial ausgedachte Welt der Finanzmathematik.

Das bedeutet also nicht, dass man fiir die Anwendbarkeit
der Formeln/Theorie unterstellen wiirde, dass Anleger tat-
sachlich risikoneutral sind. Wenn man mit gewechselten
Wahrscheinlichkeiten rechnet, dann kann man so rechnen,
als ob Anleger risikoneutral wéiren. Die transformierten
Wahrscheinlichkeiten erfassen dabei die Risikoaver-
sion. Im Fall K = 2 kann man folgendes Beobachten. Der
Anleger nutzt/rechnet mit pessimistischeren Wahrschein-
lichkeiten: Die Wahrscheinlichkeit des ungiinstigen Ereig-
nisses wird hoch gesetzt; das beobachten wir jetzt in einem

Beispiel.

1.3.5 Bemerkung: Um die Rolle der Risikoneutralwahr-
scheinlichkeiten zu verstehen, betrachten wir eine Lotterie
mit X1(w;) = 50, XYwy) = 100 und P({w1}) = p =
1L P{ws}) = 1 —p = 1 Wenn man an dieser Lotte-
rie teilnehmen will, dann muss man einen Preis V' zah-
len. Wie kann man den (hochsten fiir Kunden akzepta-
blen) Preis der Lotterie charakterisieren? Eine denkbare
Antwort ist EF¥(X1) = 75. Dies ist schlieflich die erwarte-
te Auszahlung (der durchschnittliche Gewinn bei oco-vielen

unabhéngigen Wiederholungen). Diese Antwort ist jedoch



unbefriedigend. Angenommen wir betrachten eine zweite
Lotterie: X*(w;) = 70, X*(wy) = 80. Dann ist (ebenfalls)
EF(X?) = 75. Die beiden Lotterien hétten also — wenn man
sich am Erwartungswert orientiert — den gleichen Preis.
Diese zweite Lotterie hat aber ein geringeres Risiko: Bei
der zweiten Lotterie verliert man allenfalls 5 und bei der
ersten 25. Angenommen wir betrachten eine dritte Lot-
terie: X°(wy) = 75, X3(wy) = T75. Dann ist (ebenfalls)
EF(X3) = 75. Alle drei Lotterien hiitten — wenn man sich
am Erwartungswert orientiert — den gleichen Preis. Es ist
aber unbefriedigend, dass die unterschiedlichen Lotterien,
den gleichen Preis haben sollen, obwohl sie unterschied-
lich riskant sind. Es ist vielmehr plausibel, dass von den
zwei Lotterien mit gleichem Erwartungswert diejenige mit
einem hoheren Risikoﬂ einen geringeren Preis hat (unpopu-

larer ist).

Angenommen wir wiirden beobachten (auf einem gut funk-
tionierenden Markt fiir Lotterien), dass die Lotterie X fiir
V = 70 gehandelt wird. Diesen Preis kann man als Er-
wartungswert charakterisieren. Man muss dazu aber die

Wahrscheinlichkeiten wechseln. Wir beobachten

70 =q-50+ (1 —q) - 100

N 3
q—5-

Wenn die Wahrscheinlichkeit des ungiinstigen Ereignisses

SWir gehen hier mit dem Begriff Risiko naiv um. Spéter werden wir sehen, dass
nicht jedes Risiko preis-relevant ist. ....



wi auf den héheren Wert 2 (anstatt 1) gesetzt wird, dann
wird die Aversion gegen Risiko erfasst und der Preis V
der Lotterie X! lisst sich (trotzdem) als Erwartungswert

schreiben:

EX(XY) =q- X' (w) + (1) X' (wn)

32
= 250+ =100 = 70 = V.
5 5

Also: Nach dem Wechsel der Wahrscheinlichkeiten (von
P zu Q) liefert der mit Q berechnete Erwartungswert

den beobachteten Preis.

Wir konnen so rechnen, als ob Risikoneutralitiat gelten
wiirde, obwohl sie tatsdchlich nicht gilt. Die Wahrschein-
lichkeit des unglinstigen Ereignisses wird dabei hoch ge-

setzt. Dadurch wird die Risikoaversion erfasst.

Und bei anderen Lotterien? Ist der Marktpreis fiir die zwei-

te Lotterie

3. 2
EQ(X?) = 70+ =80 = 747

Das wére sehr bequem, denn dann konnte man alle Bewer-
tungsaufgaben mit dem Wechsel zu einem Wahrscheinlich-
keitsmaf linear 16sen (der Erwartungswert ist ein linearer

Operator).

Es wird sich in der Tat zeigen, dass man fiir die Wert-
papierbewertung nur ein fiir alle Bewertungsaufgaben das

gleiche Wahrscheinlichkeitsmafs verwenden kann; und



nicht etwa fiir jedes Wertpapier eine spezifische Anpassung

der Wahrscheinlichkeiten.

» Wir werden jetzt viele Facetten der Risikoneutralwahr-
scheinlichkeiten ermitteln. Nur mache der Facetten werden
wir direkt verwenden. Sie werden also fiir etwaige spater

(oder viel spiatere Anwendung genannt).

1.3.6 Bemerkung: i.) Die Gleichung Si* = E? (S7*) be-
deutet, dass diskontierte Wertpapierpreise in der Q-Welt
im Durchschnitt iiber die Zustinde unverindert blei-

ben.

ii.) Es gilt (nur geringfiigig anders formuliert als in i.))
EQ(ASY) = 0. Die Aussage EQ(AS*) = 0 bedeutet, dass
die erwarteten Zuwichse E2(AS!*) der diskontierten Wert-
papierpreise unter Q Null sind. Die diskontierten Wertpa-
pierpreise bleiben in der Q-Welt durchschnittlich unveran-

dert.

1.3.7 Bemerkung: Wir notieren — ebenfalls fiir den spéa-

teren Gebrauch — die geometrische Form der obigen Aus-



sage:
K .
S =) quSy " (w)
k=1

qr =0

e

K
S ) @Sy (W) — S
k=1

K
& ) g8 (wk) = Sp) =0
k=1

& q L (S (w) = S, - Sy (wre) — Sp)"
& q L (AS)).

Also: Der Vektor der Zuwichse ASY* der diskontierten
Wertpapierpreise stehen orthogonal (beziiglich des Stan-
dardskalarprodukts) auf den Risikoneutralwahrscheinlich-

keiten q.

1.3.8 Defintion (Wiederholung): Es sei h € RV " ei-
ne Handelsposition. Wir definieren die diskontierte Aus-

zahlung der Handelsposition h:

Vi (wp)
.

(V) (wn) =

Ausgeschrieben gilt:

V1h<wk;) B Rhy + Sll(wk)hl + S{V(wk>h1\f
R 1 B NR
Si (Wk) Si (Wk:)

h
R 1T TTgR

(V) (wr) =




1.3.9 Bemerkung: Es sei

(1 Swy) SN (wy) S{Wm)\
R R R
| St SY wa) S (wa)
A* = R R B | e M(K,N +1,R)
\1 SHwg) S1 N wi) SiN(WK))
R R R

die Matrix der diskontierten Auszahlungen aller Anlagefor-

men; also einschliefslich des Geldmarktes.

Die obige Gleichung (V2)*(w) = hg + Mhl + ... +

R
N
51 ) ;%wk)hN fiir die Zufallsvariablen kann man mit Matrizen

auch so angeben

(1 Sl STl sen /N
R R R
| Sley s e sVw) ||,
R I e s i ‘l-am

S (wg) SN "N wg) SN (wk)
\1 e LK 1RK) \hN)
1.3.10 Satz: q definiert genau dann eine Risikoneutral-

wahrscheinlichkeit Q, wenn q > 0 und fiir alle Handelspo-
sitionen h € RV gilt:

b VW) -
V=) qlw) 7 > alwr) (V) (we)
k=1
~a"(VE) = ae (V)
— EQ ((Vlh)*) _ EQ (V_lh) .

Die Gleichung (V") = VP = EQ (%h) — B2 (V) be-



deutet, dass sich das Prinzip der Risikoneutralbewer-
tung von den Basiswertpapieren auf die Auszah-
lung beliebiger Handelspositionen fortsetzen lasst.
Diese Fortsetzungseigenschaft ist sehr niitzlich und von

grundsétzlicher Bedeutung!

Wir haben oben in 5 Gleichungen 5 Varianten der gleichen
Aussage angegeben. Es ist je nach Zusammenhang eine der

Varianten bequemer, deshalb ist die Redundanz sinnvoll.

1.3.11 Bemerkung: i.) Wir haben friiher festgestellt, dass

fiir die Risikoneutralwahrscheinlichkeiten q und die Zu-

wichse AS}*
q L ASY*

gilt. Wir erhalten auch hier eine Fortsetzungseigenschaft
von den Basisprodukten auf alle erreichbaren Auszahlungs-

profile. Es gilt also analog fiir alle Handelspositionen h und
deren Gewinn der diskontierten Werte G2* = A(VR)*

q L (A(VD))
ql G

wobei A(VE)* = (Vi) —yh,
ii.) Fiir alle kostenlosen h mit Vj* = 0 gilt

qL (Vi)

Also ist iii.) redun-
dant?

Hier kann man den
Geldmarkt weglas-
sen? h € RN ?



Also ist der Vektor der Risikoneutralwahrscheinlichkeiten

orthogonal zu den diskontierten kostenlosen Auszahlungen.

iii.) Es sei h eine Handelsposition mit diskontiertem Ge-

winn G™*. Wir betrachten die Handelsposition

(1 - Voh\

h

oy

Dann hat h’ den gleichen Gewinn wie h und die Anschaf-

h' =

fungskosten sind Null.

Mit ii.) folgt, dass die Risikoneutralwahrscheinlichkeiten q
orthogonal zu allen diskontierten Gewinnen ist. Aber das

wussten wir schon. ......

iv.) Baustelle ...... Wir betrachten die K x N Matrix

(51“’1 IR S

SN (w
g Silen) Sg LSl g

S ST (wi)
\Zer) — gp L S g )
q ist genau dann eine RNW, wenn » ¢; = 1,¢; > 0 und q

ist orthogonal auf den Spalten von AS*. q ist genau dann

orthogonal auf den Spalten von AS*, wenn q im Kern von



(AS*)T ist, d.h.

(AS*)T'q = 0.

Die erreichbaren Gewinne sind genau die Vektoren
(AS*)h,

d.h. der Spaltenraum von (AS*). Gemélk des Hauptsatzes

der Linearen Algebra
Col(AS*) @ Kern(AS*)".

Wir finden also alle RNW in Kern(AS*). Es ist 0.B.d.A.
dim Col(AS*) = N. Dann ist dim Kern(AS*)! = K — N.
Gibt es immer K — N linear unabhéngige RNWen?

1.3.12 Satz: Es sei Q eine Risikoneutralwahrscheinlich-
keitsmaf und h eine Handelsposition mit V® > 0. Dann
gilt

h h

o | Yi— W | _p

%h
Alle Anlageformen und sogar alle erreichbaren Profile ha-
ben in der Q-Welt die gleiche erwartete Rendite; nam-
lich die Rendite der risikolosen Anlageform. In der echten
Welt (also in der P-Welt) mit risikoaversen Anlegern kann

das natirlich nicht gelten. Risikoaverse Anleger wollen fiir

die Ubernahme von Risiken mit einer hoheren erwarteten



Rendite entschadigt werden. Wir werden uns spéter aus-

fithrlich mit der Risikopramie beschéftigen. wo? ...

1.4 Der erste Hauptsatz der

Assetbewertung

Fiir die Formulierung und den Beweis des 1. Hauptsatzes
sind die folgenden Vorbereitungen niitzlich. Die folgenden
Argumente orientieren sind an Pliska [37, Seite 13 ff| und
Williams [51), Seite 34 ff].

1.4.1 Satz: Es gilt

qeM sq> O,iqiz l,q LV*
i=1
sSqeVtnpt,
wobei’
Vi={XecR" X=(V""V=0hecR""},

K
P ={p] sz-: 1,p>0}.
k=1

Man konnte auch die Menge W = {Z|Z = V}/R — Vb =
G™ h € RN} betrachten; und sogar mit h e RY. .7

Beweis: Es sei h eine Handelsposition und q € V**+ N P*

5% > 0 bedeutet z; > 0 fiir alle 1.



der Vektor der Q definiert. Wir zeigen E? ((V)*) = V.
Wir definieren h = (ho— V2, hy, ..., h,)T. Dann folgt Vofl =
0 und (V)" € V*. Aus q € V** folgt EQ((Vh)*) = o.
Ferner gilt

(VR = A'h = A*h — V* = (V)" — VR,

Dann folgt schlieRlich E? ((V{*)*) = V{?

1.4.2 Bemerkung: i.) Wir bemerken, dass V* ein linearer
Unterraum von R ist. V* ist der Unterraum der kosten-

los erreichbaren diskontierten Auszahlungen.

ii.) Es sei
A={XcR":X>0und X #0}.

A ist die Menge aller (auch moglicherweise nicht erreich-
baren) denkbaren Auszahlungen, die — wenn sie kostenlos

erreichbar sind — zu Arbitragemoglichkeiten gehoren.
Arbitragefreiheit bedeutet demnach V* N A = 0.
iii.) Es sei

V={XecR": X=(V"V*=0hecR""}

Es gilt: V # 0 genau dann, wenn V* # (). Die Menge V
ist einerseits natirlicher als V*, trotzdem verwenden wir
V*. Es gilt: q definiert genau dann ein Risikoneutralwahr-

scheinlichkeitsmalfs, wenn q > 0, Zfil ¢ =1,q L V" gilt



(also ist auch V* natirlich) . In dieser Aquivalenz ist V*
relevant und wir interessieren uns fir Risikoneutralwahr-

scheinlichkeiten.
iv.) Es gilt

V* _ {X = RK X — (‘Gh>*7‘/()h _ O,h c RN—I—l}
XX = (V) - = Gh) = 6

Arbitragefreiheit bedeutet demnach G* N A = 0.

1.4.3 Satz iiber die trennende Hyperebene: Es sei U
ein linearer Unterraum des R® und C C R” eine konve-
xe, abgeschlossene und beschriankte Menge von R® und es
gelte U N C' = (). Dann gibt es eine Hyperebene H = {x
xen=_0} mit U C Hund pen > 0 fir alle p € C.

Wir beachten auch: Wegen U C H gilt auch fiir alleuw € U

die Orthogonalitiatseigenschaft u en = 0.

p e n > 0 bedeutet geometrisch, dass p auf den gleichen

Seite der Hyperebene liegt wie der Normalvektor n.

Beweis: Vgl. Williams [51, Abschnitt 3.6].

1.4.4 Erster Hauptsatz: Es gilt
VNA=0<M:#I(.

Es gibt genau dann ein Risikoneutralwahrschein-



lichkeitsmafs, wenn Arbitragefreiheit gilt.

Abbildung 1.4.1: Die Abbildung (vgl. Pliska 37, ......])
illustriert den Beweis des 1 HS. V* darf
den 1 Quadranten nicht schneiden. C'
ist kompakt, abgeschlossen und disjunkt
zum Unterraum V* (denn C' liegt im
ersten Quadranten). Dann gibt es eine
Hyperebene durch Null mit normalen
Vektor n und diese Hyperebene umfasst
V*. Also ist n orthogonal zu V*. Dann
ist @ = B/(n; +..n,) ist ein Vektor mit
Risikoneutralwahrscheinlichkeiten. Denn
die Komponenten addieren sich zu Eins
sind alle strickt positiv und orthogonal

auf V*.

1.4.5 Bemerkung: Wenn es ein Risikoneutralwahrschein-
lichkeitsmals gibt, dann konnen wir die Risikoneutralbewer-

tungsmethoden verwenden. Das wére schon. Arbitragefrei-



heit ist eine verniinftige Annahme. Genau dann wenn diese
Voraussetzung erfiillt ist, dann gibt es ein Risikoneutral-

wahrscheinlichkeitsmaf. Es fiigt sich also sehr schon.

Der erste Hauptsatz heifst aus mit gutem Grund Hauptsatz.
Genau unter der verniinftigen Voraussetzung der Arbitra-
gefreiheit gibt es ein Wahrscheinlichkeitsmak @Q, so dass

Vh
h:EQ 1 .
Yo 147

bzw.

Vbh* _ EQ <‘/1h*)

Exkurs: Farkas und Stiemke

Dieser Exkurs ist noch ei-
ne Baustelle ....

Wir haben den ersten Hauptsatz mit dem Trennungssatz
bewiesen. Man kann den Hauptsatz auch mit Farkas Lem-
ma beweisen (vgl. Pliska [37], S. 16]).

1.4.6 Lemma von Farkas: Es sei M eine m X n Matrix
und b € R" ein.

Dann hat entweder das System

Mx =b,x >0



oder das System
yIM < 0,bly >0

eine Losung.

» Zunichst beachten wir den Zusammenhang zwischen Ar-

bitrage und dem Lemma von Farkas (das ist eine Ubungs-

aufgabe aus Pliska [37], Seite 16])

1.4.7 Lemma (Arbitrage und Farkas Lemma): Es sei
M die (2N + K) x (K + 1) Matrix

( 0 0 0 0 1 1
ASll’*(wl) —ASll’*(wl) AS}\}*(wl) —AS}\}*(wl) -1 0 ..
M= [ AS*(ws) —AS*(ws) ... ASY(wy) —ASy(wy) 0 —1 ...

\AS] (wi) —ASH (k) ... ASN(wk) —ASY(wg) 0 0
und

b=(1,0,0,...,07 € RE*!

Es gibt genau dann eine Arbitrage, wenn es ein x > 0
mit Mx = b gibt. [Das ist die erste Alternative aus dem

Lemma von Farkas|

1.4.8 Beweis des ersten Hauptsatz mit Farkas Lem-

ma:

» Noch direkter (in der Tat einen SEHR direkten Beweis)




erhilt man einen Beweis des ersten Hauptsatzes mit dem

Lemma von Stiemke.

1.4.9 Lemma von Stiemke: Es sei M eine m x n Matrix
und b € R" ein.

Dann hat entweder das System

Bx >0,Bx#0
oder das System

Bly =0,y, > 0
eine Losung.

Beweis: Vgl. Jungnickel [28] Seite 42]

1.4.10 Beweis des Hauptsatzes mit dem Lemma von

Stiemke:

1.5 Bewertung bedingter Auszahlungen

Die Bewertung von Derivaten gehort zu den Basiskompe-
tenzen eines Finanzmathematikers. Wir definieren beding-

te Auszahlungen, die uns als Modell fiir Derivate dienen.

1.5.1 Definiton: Eine bedingte Auszahlung fif|¢ = 1

"Die Auszahlung erhilt der Inhaber im Zeitpunt ¢ = 1.



ist eine Zufallsvariabld’] X : Q — R, w — X(w).

1.5.2 Definiton: Eine bedingte Auszahlung X heifst re-
plizierbar oder erreichbar, wenn es eine Handelspositi-
on h mit V}* = X gibt. h heift dann die replizierende
Handelsposition fiir X. V" nennt man die Replikati-

onskosten von X.

1.5.3 Bemerkung: Wir bemerkten, dass die Replikati-
onskosten fiir X wohldefiniert sind. In der Tat: Wir be-

merken, dass die Replikationskosten unabhangig von der

replizierenden Position sind (wegen LOOP, vgl. Satz|[1.2.24)):
Wenn h; und hy beide das Profil X replizieren, dann ha-
ben h; und h, die gleichen Anschaffungskosten, d.h. es gilt
Vil = V2,

1.5.4 Bemerkung: V! = X gilt genau dann, wenn Ah =
X gilt. Die Frage nach der Replizierbarkeit entspricht also
der Losbarkeit des linearen Gleichungssystems Ah = X.
In der Terminologie der Linearen Algebra: X ist in dem

Raum, der von den Spalten von A erzeugt wird: X €
Col(A).

1.5.5 Definiton: Wir betrachten ein arbitragefreies EPFMM

und fiigen eine weitere Anlagemdglichkeit hinzu. px sei der

8 Zufallsvariablensind im Allgemeinen messbar. Die miissen wir hier nicht ange-
ben, da A = P(Q) ist.



Preis zu dem der Anleger das Finanzprodukt mit der Aus-
zahlung X kaufen kann. Wenn das erweiterte EPFMM
arbitragefrei bleibt, dann heilst der Preis px mit Arbitra-

gefreiheit vereinbar bzw. fair.

Die Auszahlungsmatrix des erweiterten EPFMM be-
zeichnen wir mit

R{ SHwi) ... S¥'w) SN(w)
A Rl SHws) .. SYMwr) S{(wn)
R SHwr) ... SN N wk) SN(wk) X(wk)

und den Vektor der Preise des erweiterten EPFMM mit

1
S() - So
pbx

» Die Aufgabe des Finanzmathematikers besteht jetzt dar-
in, den fairen Preis oder die fairen Preise zu ermitteln. Wir
lernen zunéchst zwei Bewertungsmethoden kennen: Bewer-
tung durch Replikation und das Risikoneutralbewertungs-
prinzip. Spater werden wir drei weitere Methoden kennen

lernen.

1.5.6 Satz (Bewertung durch Replikation): Das EPFMM
sei arbitragefrei und X mit der Handelsposition h replizier-

bar, d.h. V! = Ah. Dann ist

px = Vit



der einzige faire Preis fiir X.

1.5.7 Satz (Risikoneutralbewertungsprinzip): Das EPFMM
sei arbitragefrei und X eine replizierbare bedingte Auszah-

lung. Dann gilt fiir den fairen Preis von X

X
Q

wobei QQ (irgend-)ein Risikoneutralwahrscheinlichkeitsmaf

1st.

1.5.8 Bemerkung: Wenn fiir alle w* Derivate mit Aus-

zahlung

X (w) RS falls w = w*
w (W) =
0 :sonst.

fiir px . gehandelt werden (oder durch Portfolios hy« re-
pliziert werden kénnen), dann erhélt man eine Technik, um

die Risikoneutralwahrscheinlichkeiten zu ermitteln:

)= Xoees

Da sich diese Wahrscheinlichkeiten aus den beobachteten

VM 2) px. —E( Q).

Preisen (implizit) ergeben, spricht man von impliziten
Risikoneutralwahrscheinlichkeiten. Man kann auch sa-
gen, dass die Preise die Risikoneutralwahrscheinlichkeiten

offenlegen.

Die impliziten Risikoneutralwahrscheinlichkeiten kann



man auch auf Basis der folgenden bedingten Auszahlungen

ermitteln

0 : sonst.

XE*F(w) _ { 1 :falls w = w*

Man ermittelt Handelsposition hPF die XBF replizieren.
Dann gilt"Y
hBF

RIVyY = Q(w").

» Liir den spateren Gebrauch notiernen wir noch die fol-

gende Bemerkung.

1.5.9 Bemerkung;: i.) Es sei h eine Handelsposition und
@1, Q- Risikoneutralwahrscheinlichkeiten. Dann gilt

WY e (W
= (1) == (&

B (1) =B (1)

und

ii.) Wenn X replizierbar ist und Qy, Q Risikoneutralwahr-

scheinlichkeiten.

X X
Q Qo [ “™
o (Rf) e (Rf)

9BF steht fiir Butterfly.
19Vgl. auch Hull |14, Seite 468] fiir diese Methode (in einem anderen Kontext).

. hBF . . .
Die Werte V, " entsprechen den sogenannten Zustandspreisen, die wir ab

behandeln.




und

E% (X) = E® (X).

1.6 Vollstandige Finanzmarkte und
Eindeutigkeit des

Risikoneutralwahrscheinlichkeitsmads

1.6.1 Definiton: Das EPFMM heift vollstindig, wenn
es fiir jede bedingte Auszahlung X € R” eine replizierende
Position h gibt, d.h. es gibt ein h mit Ah = X.

1.6.2 Bemerkung: Wir betrachten die Auszahlungsma-

trix
(R S{w) .. S¥Yw) SN(w) )
A — R Stwa) ... SPM Hwa) SP(wo) c REXI+N

\R Slwr) . 5 (wr) S¥(wr) )

und eine bedingte Auszahlung X. Es gibt genau dann eine

R1+N

replizierende Position h € , wenn das lineare Glei-

chungssystem
Ah=X

eine Losung h € R hat.

Vollstandigkeit bedeutet also, dass das lineare Gleichungs-



system fiir jede rechte Seite X € R" lésbar ist. Dies ist
genau dann der Fall, wenn die Matrix A den Rang K hat
(wenn die Matrix A K linear unabhéngige Spalten hat), so
dass die Spalten von A den ganzen Raum R”* aufspannen.

Mit noch anderen Worten: Die Spalten bilden ein Erzeu-
gendensystem des R™ (alle denkbaren X € R¥).

» Wir haben den folgenden Satz bewiesen:

1.6.3 Satz: Das EPFMM ist genau dann vollstandig, wenn
Rang A = K ist.

1.6.4 Zweiter Hauptsatz: In einem arbitargefreien EPFMM
gilt Vollstandigkeit genau dann, wenn es genau ein Risiko-

neutralwahrscheinlichkeitsmafs gibt.

Mit anderen Worten: In einem arbitargefreien EPFMM
ist die Vollstandigkeit aquivalent zur Eindeutigkeit des

Risikoneutralwahrscheinlichkeitsmalfes.

Vorsicht: Die Formulierung Vollstandigkeit ist dquivalent
zur Eindeutigkeit ist {iblich aber ungenau! In einem voll-
standigen EPFMM kann es Arbitragemoglichkeiten geben.
Dann gibt es (natiirlich) kein Risikoneutralwahrscheinlich-

keitsmals.

1.6.5 Bemerkung: Wenn das EPFMM vollstandig ist,
dann hat A € M(K,N + 1;R) den Rang K. Offenbar



hat dann auch A* € M(K,N + 1;R) den Rang K. Der
Rang von (A*) € M(N + 1, K;R) und von A*(A*) ist
ebenfalls K (vgl. z.B. Garcia und Horn |11, S. 303| oder
Meyer [33] S. 212]). Also ist A*(A*)T eine K x K Matrix
mit Rang K; also ist A*(A*)! invertierbar. Wir erhalten
damit eine geschlossene Formel fiir die Risikoneutralwahr-

scheinlichkeiten q. In der Tat, aus der Bewertungsformel

(A")'q =Sy folgt, dass A*(A*)'q = A*Sy. SchlieRlich
* * —1 * O
q=(A*(A")") A*S,.

Wir haben einen alternativen (auch kurzen Beweis) fiir
die Implikation, Arbitragefrei und Vollstdndigkeit impli-
ziert Eindeutigkeit, gefunden. In der Tat: Wenn qi, qo Vek-
toren mit Risikoneutralwahrscheinlichkeiten sind, dann gilt
(A*)'q; = Sp,7 = 1,2. Dann sind die beiden q; auch Lo-
sungen der linearen Gleichung A*(A*)Tq; = A*S,. Die
K x K Matrix A*(A*)T hat den Rang K. Dann ist die
Losung des linearen Gleichungssystems eindeutig bestimt.

Also q; = qo.

1.6.6 Bemerkung: Wenn das arbitragefreie EPFMM voll-
standig ist, dann gibt es fiir alle bedingten Auszahlungen
nur einen Preis, der mit Arbitragefreiheit vereinbar ist und
diesen Preis kann man mit den Formeln px = V* oder
px = EQ(X/B) berechnen. Also: Die Finanzpreise der das
EPFMM definierenden Anlageméglichkeiten (den Basis-

wertpapieren) legen die Preise beliebiger bedingter Aus-

Campbell?

Kann man die Ein-
deutigkeit auch an
(ATq; = So,i =
1,2 ablesen.

Die Preise der
Basiswerpa-

piere erfiillen
untereinander
Arbitragefreiheit.



zahlungen (den Derivaten) eindeutig fest. Ermittelt wer-
den relative Bewertungen; relativ zu den Basiswertpa-

pieren.

1.7 Unvollstandige Markte und

Arbitragegrenzen

Wenn das arbitragefreie EPFMM unvollstiandig ist, dann
gibt es fiir nicht replizierbare Auszahlungen viele Prei-
se, die mit Arbitragefreiheit vereinbar sind. Diese Aussage
wird im folgenden substantiviert, wobei wir uns (wieder)
an Pliska [37] und Williams [51] orientieren. Wir werden
sogenannte Arbitragegrenzen ermitteln zwischen denen die

Preise liegen, die mit Arbitragefreiheit vereinbar sind.

1.7.1 Definition: Es sei X eine bedingte Auszahlung und
es gelte Arbitragefreiheit. Es sei Q ein Risikoneutralwahr-
scheinlichkeitsmalfs. Wir definieren die folgenden Operato-
ren[!| auf der Menge der bedingten Auszahlungen

VH(X) = inf{ EQ[Y/R]|Y > X,Y replizierbar },
V7 (X) = supq ]EQ[Y/R] 'Y < XY replizierbar },

Beachte, dass die Wahl von Q € M fiir die Werte V*(X)
und V(X)) irrelevant ist: da Y replizierbar ist, nimmt

EQ[Y /R] fiir alle Q € M den gleichen Wert an.

U'Wir sprechen bei V* und V™~ von Operatoren, da sie auf Abbildungen (némlich
auf die Zufallsvariablen X) angewendet werden.

Wir suchen die preiswer-
teste Superreplikation. .....



Ein erreichbares Auszahlungsprofil Y mit Y > X heift
Superreplikation von X. Da Y immer (in allen Zustén-
den) mindestens so gut wie X ist, sind plausible Preise von
X kleiner oder gleich dem fairen Preis E?[Y /R] von Y.
Das gilt fiir alle Superreplikationen von X. Wir erhalten
deshalb mit V*(X) die kleinste obere Schranke (da wir

das Infimum bilden).

Ein erreichbares Auszahlungsprofil Y mit Y < X heift
Subreplikation von X. Wir erhalten mit V= (X) die grofk-

te untere Schranke (da wir das Supremum bilden).

VH(X) und V~(X) heifen auch obere bzw. untere Arbi-
tragegrenze. Wir suchen also moglichst preiswerte Super-

replikationen und mdoglichst wertvolle Subreplikationen. ......

1.7.2 Satz: Es sei X eine bedingte Auszahlung und es
gelte Arbitragefreiheit. Es gibt replizierbare Y, Y™ mit
VHX) = EQ[YT/Ry] bzw. V(X) = EQ[Y~/R,]. Fiir
nicht replizierbare X gilt dabei: X # Y > X und X #
Y <X

Man kann also eine replizierbare Superreplikation finden,
deren fairer Wert genau der oberen Arbitragegrenze ent-

spricht.

1.7.3 Bemerkung: Obwohl also V(X) = EQ[Y'/R]
gilt, kann fiir nicht-replizierbare X die Gleichung Y+ = X

Die Optimierungsproble-
me hat also Losungen. ......



nicht gelten; sonst wire X replizierbar (mit h*). Also muss

Y " (w) > X(w) fiir mindestens ein w € ) gelten.

1.7.4 Satz: In einem arbitargefreien EPFMM gilt, dass X
genau dann nicht replizierbar ist, wenn V(X) > V~(X)

1st.

1.7.5 Satz: Gegeben sei ein arbitragefreies EPFMM so-
wie sowie eine nicht-replizierbare bedingte Auszahlung
X. Es gibt genau dann eine Arbitrage, wenn die beding-
te Auszahlung X (in ¢ = 0) zu einem Preis p > V*(X)
oder zu einem Preis p < V7 (X) gehandelt wird. Nur fiir
p € (V7(X),V*H(X)) bleibt die Arbitragefreiheit erhalten.

Ruth Williams, Seite 48:
In fact, ...... are also not
arbitrage free initial prices
in this case.

1.7.6 Satz: Essei X eine bedingte Auszahlung und Qq, ..., Qs €

M = W+ N P eine maximal linear unabhiingige Teil-

menge von W NPT (und so eine Basis von W), wobei

W ={Z|Z=V"R—Vh=G" heR '} Dann gilt: Warum kann man

. K - eine solche Basis
(1) Die Menge der Y € R™ mit finden: Baustelle,

Vgl. Williams Seite

Y > X 49 oder Pliska Sei-
Y te 25.
U-—=0
R
A=UTQ, =0
A=UlQ,;=0

ANeR Y eREUeRY



entspricht der Menge der erreichbaren Auszahlungen Y mit
Y > X.
(2) Wenn Y das obige System erfiillt, dann ist A ein fairer

Preis von Y.

» Baustelle: Wenn U ein Unterraum mit Dimension d ist
und O eine Menge, so dass U N O° # () gilt, dann gibt
es d linear unabhangige Vektoren vy, ...,v4 in U N O°. Es
sei w1 € U N O°. Wir ergianzen uy; mit uo, ..., ug zu einer
Basis von U. Dann ist auch v1 = uy,v9 = u; + cug, v3 =
U1+ Uy +€us, ... eine Basis von U. Fiir hinreichend kleines

e gilt auch firi=1,....,d v, € UNO° ().

1.7.7 Satz: Essei X eine bedingte Auszahlung und Qq, ..., Qs €
M = W+ N P' eine Basis von W+, wobei W = {Z|Z =
VB/R -V =G} he RV}

Es sei AT die Losung des linearen Optimierungsproblem

Minimiere )\

ud N, Y >X

Y
U-——=0
R
A=UTQ, =0
A=UlQ,;=0

A€ R, Y € RE erreichbar , U € R



Dann gilt
AT =V"(X)
1.7.8 Satz: Essei X eine bedingte Auszahlung und Qq, ..., Qs €

M = W+ N P* eine Basis von W+, wobei W = {Z|Z =
VI/R -Vl

Es sei A7 die Losung des linearen Optimierungsproblem

Maximiere A\

u.d.N. Y <X

Y
U—-—=0

R
A=UTQ; =0
A-UlQ,;=0

A€ R, Y € RY erreichbar , U € RY

Dann gilt

A =V(X)

1.7.9 Satz: Es sei M # (). Fiir jede bedingte Auszahlung
X gilt:

VHX) = sup {E9X/R,]|Q € M}

Vo(X) = inf {E9X/Ri]|Q € b}



1.7.10 Beispiel: Es sei N = 1,r = 1/9,K = 3,5, =
5, S1(w1) = 60/9, S1(w2) = 40/9, S1(ws3) = 30/9.

e Gilt Vollstandigkeit fiir das so definierte EPFMM?

e Bestimmen Sie die Menge der Risikoneutralwahrschein-

lichkeiten.

e Bestimmen Sie die Menge der fairen Preise des Auszahl-

ungsprofils (7,5, 4)7

e Bestimmen Sie die Menge der fairen Preise des Auszahl-
ungsprofils (1,0,0)"

e Die Auszahlungsmatrix ist

10/9 60/9
A=|10/9 40/9
10/9 30/9

e Offensichtlich ist Rang(A) = 2 < 3 = K. Also ist
das EPFMM unvollstandig!

o Also ist #(M) = 0 oder #(M) = oo. [#(M) = 1
wiirde gemafs 2'tem Hauptsatz Vollstandigkeit impli-

zieren!|

e Schema fiir das WP



So=5— Si(w2) = B, rg(ws) = —11.11%
\‘ Sl(wg) = %,T (wg) = —33.33%
e Schema fiir GM
- Bi(wy) = 4, r(w) =7 =11.11%

Arbitragefrei

e Vermutlich ist das EPFMM arbitragefrei, denn es

gibt keine Anlageform die uniform besser ist.

— Im Zustand w; ist das WP besser. In den Zu-

standen wy, w3 ist der GM besser.

e Vermutlich ist es also so: Es gibt unendlich viele RN-
WM: #(M) = o0

b.) Risikoneutralwahrscheinlichkeitsmafe

e Wir miissen das LGS (A*)'q = (1,5)!, wobei

e (111
A <643>'

e Wir suchen nach Ldsungen mit ¢; > 0.



b.) Risikoneutralwahrscheinlichkeitsmafie
e Wir gehen also von diesen beiden Gleichungen aus:

Gt+tetga=1
6g1 +4q> 4+ 3q3 = 5

e Gl. 1 x(—3) plus GI. 2:

31+ =2= g =2—3q

e Wir beobachten

2
qo > 0 <:>2—3q1>0<:>q1<§

b.) Risikoneutralwahrscheinlichkeitsmafie
e Wir gehen wieder von diesen beiden Gleichungen aus:

Gt+etga=1
6g1 + 4q> + 3q3 = 5

e Gl 1 x(—4) plus GI. 2:

21 —@=1= 201 —1=g¢



e Wir beobachten

1
q3 >0 <:>2q1—1>0<:>q1>§

b.) Risikoneutralwahrscheinlichkeitsmafie

o Firq, € (%,%) ist g =2—3¢; > 0und g3 =2¢; —1 >
0

e Die RNWM werden also durch Wahrscheinlichkeiten
auf der Strecke

A 0 1 o

— _ _ N A -z

q 2 — 3\ 2 | + 31, €<2,3)
22 —1 —1 2

o Fiir A = 1/2 bzw. A = 2/3 erhalten die Punkte
(1/2,1/2,0)" respektive (2/3,0,1/3)!. Diese definie-
ren aber keine RNWM; sondern nur die Endpunkte
der Strecke. Die Risikoneutralelementarwahrschein-
lichkeiten liegen im inneren der Strecke. Die Strecke

liegt auf dem Dreieck 1 + ¢+ q3 = 1,¢; € [0, 1].

q3

q2

q1



c.) Replikation und Bewertung von X = (7,5,4)"

e Die bedingte Auszahlung (7,5,4)" ist replizierbar,

denn

e h = (2% )7 Iést das LGS

10° 10
10/9 60/9) 7
10/9 40/9 (hé> — |5
10/9 30/9) N 4

e Die Anschaffungskosten sind Vj* = % + % -5 = 5.4

c.) Replikation und Bewertung von X = (7,5,4)7

e Die bedingte Auszahlung (7,5,4)" ist replizierbar,

deshalb kann man sie mit dem Risikoneutralbewer-

tungsprinzip eindeutig bewerten: Wir wihlen z.B. A =
6 _ (6 2 2\T
15- Dann q = (15, 15, 35)° und

4

X 6 7 6 5 0
EQ (1_()) = — Tt Tt T
5 10 5 10 5 10 n

e Fiir andere A € (1/2,2/3) erhdlt man ebenfalls 5.4!

d.) Replikation und Bewertung von X = (1,0,0)’

e Die bedingte Auszahlung (1,0, 0)? ist nicht replizier-

bar, denn

e Das folgende LGS hat keine Losung (das konnen und



sollen Sie mit Methoden der L.A. selbstindig verifi-

zieren!)
10/9 60/9 , 1
10/9 40/9 ( O) —lo
10/9 30/9) N 0
o Also geht Bewertung mit Replikation nicht.

d.) Replikation und Bewertung von X = (1,0, 0)?

e Wenn q = (qi, ¢, q3)" Risikoneutralelementarwahr-

scheinlichkeiten sind, dann kénnen wir so fair bewer-

X 9
EQl i

ten:

e Wegen ¢; € (1/2,2/3)! erhalten wir, dass alle Preise
im Intervall (0.45,0.6) fair sind. Alle anderen Prei-
se sind unfair. Insbesondere sind auch 0.45 und 0.6

unfair!



1.8 Zustandspreise, stochastische
Diskontfaktoren und

Risikoneutralwahrscheinlichkeiten

Fiir bestimmte Fragestellungen sind anstatt der Risikoneu-
tralwahrscheinlichkeiten drei alternative im Wesentlichen
aquivalente Konzepte niitzlich: Zustandspreise, stochas-

tische Diskontfaktoren und Likelihood Quotienten.

1.8.1 Definition: ¢» € R, heikt Zustandspreisvektor,

falls
Alyp =S,
gilt. Ausgeschrieben ergibt sich
R! Rl .. R R! P (wr) 1
Si(w) Si(ws) . Si(wr-1) Silwr) [ | ¥lw2) | _ | S
S (w) Si(wa) o ST (wk-1) ST (wk) P (wk) Sév

d.h. fiir die Wertpapiere mit den Kennnummernz =1, ..., N

gilt
K

So =) Si(wr)t(wr)

k=1
und aus der Gleichung fiir den Geldmarkt ergibt sich

K
L= Riv(w).
P

1.8.2 Satz: Es gibt genau dann einen Zustandspreisvek-

tor, wenn es ein Risikoneutralwahrscheinlichkeitsmaf gibt.



1.8.3 Bemerkung: Das Wertpapier mit der Wertpapier-
nummer j mit der Auszahlun S(wy) = d; heift Arrow-
Debreau-Wertpapier[”| Fiir einen Zustandspreisvektor

1 € RE, erhalten wir fiir die Arrow-Debreau-Wertpapiere

K
S =Y trS(wr) = ;.
k=1

Es kostet also 1; Geldeinheiten, um sich fiir genau den
Zustand j die Zahlung einer Geldeinheit zu reservieren.
Die Bezeichnung Zustandspreis ist also passend: Man kann
fiir diesen Preis genau fiir diesen Zustand eine Zahlung von

1 Geldeinheit sichern.

1.8.4 Bemerkung: Die Gleichung ATy = S, konnen
wir als Bewertungsgleichungen fiir die Basiswertpapiere mit
den Kennnummern ¢ = 1, ..., N auffassen. Diese Preise sind
aber gegeben und wir bendtigen gar keine Bewertungsglei-
chungen fiir diese Wertpapiere. Wir sind eigentlich an der
Bewertung von erreichbaren Profilen X € Col(A) interes-
siert. Die naheliegende Frage, ob sich die Bewertungsglei-
chung auch auf X € Col(A) iibertrigt, haben wir schon
fiir Risikoneutralwahrscheinlichkeiten affirmativ beantwor-

tet. Ein analoges Resultat gilt fiir Zustandspreise.

1.8.5 Satz: Das EPFMM sei arbitragefrei und 1 ein Zu-
standspreisvektor. Es sei zudem X € Col(A) und px der

125, bezeichnet hier das Kronecker Delta.

130Uber Kenneth Arrow https://de.wikipedia.org/wiki/Kenneth_Arrow und
iiber Gerald Debreu https://de.wikipedia.org/wiki/Gerard_Debreu


https://de.wikipedia.org/wiki/Kenneth_Arrow
https://de.wikipedia.org/wiki/Gerard_Debreu

faire Preis von X. Dann gilt

px =X =Xep.

1.8.6 Beispiel: Es sei 7 = ¢ = 0.11, Sy = 5, Si(w;) =
%O,Sl(wg) = %. p1 = %7]92 = %. Die Risikoneutralwahr-

Ne¥|

scheinlichkeiten haben wir bereits bestimmt: Es gilt ¢ =

27 G2 = 1 . Um die Zustandspreise zu bestimmten, 16st man

v (o) (1
2 9)\v) " \s)

Die eindeutig bestimmte Losung des LGS ist ¢ = 0.45, 19 =
0.45.

1.8.7 Definition: Eine Zufallsvariable m : €2 — Ry —
bzw. m € R™ - heift stochastischer Diskontfaktor,

falls fiir den Geldmarkt bzw. fiir Wertpapierpreise gilt: Die Positivitéit wird von
Back [1, Seite 52] nicht
vorausgesetzt; von z.B.
Munk [35] schon.

1_prk (wi)R] = E¥(mR]),

K
So =Y Plwr)m(wr)Si(wr) = EF(mS)), i =1,..,N.
k=1

1.8.8 Bemerkung: i.) Fiir die Bestimmung der Risiko-
neutralwahrscheinlichkeiten kann man das lineare Gleichungs-

system



und zur Bestimmung der Zustandspreise das LGS
(A)'ep =S,

Fir die stochastischen Diskontfaktoren erhalten wir eben-

falls ein lineare LGS

(A>T Diag<p17 7p/€> m = SO'
Wenn (jeweils) eine Losung > 0 vorliegt, dann liegen Ri-

sikoneutralwahrscheinlichkeiten, Zustandspreise bzw. sto-

chastische Diskontfaktoren vor.

ii.) Wenn der Rang(A) = K, dann kénnen wir auch den

Trick von vorne verwenden, um eine Losung zu suchen.
Dann ist nimlich Rang(AAT) = K. Also ist AAT inver-

tierbar. Dann konnen wir wie folgt umformen:

(A)'p =S
= A(A)yp = AS,
= ¥ =(A(A)")'AS,.

Analog geht das auch fiir die stochastischen Diskontfakto-

remn.

iii.) Wenn K > N +1 (das passt besser zur Realitéit), dann
hat das LGS (A)74p = S, weniger Gleichungen (nimlich
N + 1) als Unbekannte (jedes Wertpapier stiftet eine Glei-
chung). Wenn es eine Losung gibt, dann gibt es unendlich

viele.

Frage: Kann man mit
dem Darstellungssatz von
Riesz eine Losung finden?



1.8.9 Bemerkung: Es sei m ein stochastischer Diskont-

faktor. Es gilt

Fiir den Diskontfaktor ? einer risikolosen Zahlung ver-
1

wenden wir die Notation Z. Die Bemerkung besagt, dass

der Erwartungswert des stochastischen Diskontfaktors Z

1st.

1.8.10 Satz: Es gibt genau dann einen stochastischen Dis-
kontfaktor, wenn es ein risikoneutrales Wahrscheinlichkeits-

mal gibt.

» Auch fiir stochastische Diskontfaktoren gilt die Fortset-
zungseigenschaft von den Basisprodukten zu den erreich-

baren Profilen.

1.8.11 Satz: Das EPFMM sei arbitragefrei und m ein
stochastischer Diskontfaktor. Es sei zudem X € Col(A)

und px der faire Preis von X. Dann gilt

px = EF(mX).
1.8.12 Beispiel: Es sei r = % = 0.11, Sy = 5, Si(wy) =
%,Sl(wg) = %. p1 = %,pz = i. Die Risikoneutralwahr-

scheinlichkeiten haben wir bereits bestimmt: Es gilt ¢ =

%, Go = % Auch die Zustandspreise haben wir bestimmt. Es



gilt ¢ = 0.45,19 = 0.45. Den stochastischen Diskontfak-

toren bestimmen wir mit der Formel

m; = )
147 \pi

Es gilt m; = 0.6, mo = 1.8.

1.8.13 Definition: Eine Zufallsvariable d : €2 — R —
bzw.d € R® — heift Likelihood Quotient bzw. Radon-
Nikodym-Ableitung, falls gilt:

1= Plwy)d(w) =EF(d),
k=1

K i i
si—ZP(w)d(w)Sl(“k)—EP a2t =1 N
0 — k k Rf — Rf , = 1,...,IV.
k=1 1 1

1.8.14 Satz: Es gibt genau dann einen Likelihood Quoti-
enten, wenn es ein risikoneutrales Wahrscheinlichkeitsmafs

gibt.

» Es gilt d(wi) = %((Z:)) Deshalb ist die Bezeichnung Like-
lihood Quotient passend. Warum auch der Name Radon-
Nikodym Ableitung passend ist, erschlielt sich erst, wenn

man zeitstetige zustandsstetige Finanzmathematik betreibt.

1.8.15 Satz: Das EPFMM sei arbitragefrei und d ein Li-
kelihood Quotient. Es sei zudem X € Col(A) und px der



faire Preis von X. Dann gilt

X
_ P
px—E (d—Rf>

1.8.16 Bemerkung: Wir betrachten die vier Wertpa-
pierbewertungsgleichungen wegen der besseren Vergleich-

barkeit nochmal gemeinsam:

So =Y w(wr)Si(wr)
k=1

So =D Plwr)m(wi)Si(wi) = Ef (mS))
k=1
- S (wy) Si

o= Q)L = EC (—)
kz Ry R

00— Wi Wi Rf = Rf .
k=1 1 1

An den oben stehenden Gleichungen kann man mit Koef-

fizientenvergleich die Umrechnungsregeln ablesen:

e Wenn 1) € R%, ein Zustandspreisvektor ist, dann ist

durch m(w;) = %Eig
und durch Q(w;) = 1(w;)R! eine Risikoneutralwahr-
scheinlichkeit definiert. Ein Likelihood Quotient ist

d(wy) = ?1@((533{

ein stochastischer Diskontfaktor

e Wenn Q eine Risikoneutralwahrscheinlichkeit ist, dann

Q(wj)

ist durch m(w;) = %f ein stochastischer Diskont-
1

faktor und durch ¢ (w;) = % ein Zustandspreis-

1



vektor definiert. Ein Likelihood Quotient ist durch

d(wy) = (I%((:j:)) definiert.

e Wenn m ein stochastischer Diskontfaktor ist, dann
ist durch ¥ (w;) = P(w;)m(w;) und durch Q(w;) =
P(w;)m(w;)R! eine Risikoneutralwahrscheinlichkeit de-
finiert. Ein Likelihood Quotient ist durch d(wy) =
m(wy)R! definiert.

e Wenn d ein Likelihood Quotient ist, dann ist Q(wy) =

P(wy)d(wy) eine Risikoneutralwahrscheinlichkeit und

d{wy)
RS

m(wg) = . Ein Zustandspreisvektor ist durch

1
Wlwy) = % definiert.

1

1.8.17 Bemerkung: Wir haben drei Darstellungen der

Wertpapierbewertung fiir erreichbare Profile als Erwar-

tungswerte:
X
_wQ [ 2
X
_ WP ~r
px = EF(mX)

Der stochastische Diskontfaktor und die Radon-Nikodym-
Ableitung werden gemeinsam mit dem empirischen Wahr-

scheinlichkeitsmaf P verwendet. Wenn man (nur) den Zins

1
Rf

dann muss man zum Risikoneutralwahrscheinlichkeitsmais

der risikolosen Anlageform zum diskontieren verwendet,

Q wechseln.



1.8.18 Bemerkung Interpretation m(w) = %: Der
Diskontfaktor fiir risikolose Profile ist RL{. Mit diesem Fak-
tor werden risikolose Zahlungen diskontiert. Um Risiko-
aversion zu erfassen und riskante Zahlungen zu diskontie-

ren wird Z = é noch mit dem Likelihood Quotient der
1

Wahrscheinlichkeiten % multipliziert. Das geschieht Zu-
stand fiir Zustand bevor der Erwartungswert (beziiglich IP)
gebildet wird. Wir hatten fiir den Fall K’ = 2 gesehen, dass
gute Zustiande in der Q-Welt typischerweise eine geringere
Wahrscheinlichkeit haben als in der P-Welt. Der Likelihood
Quotient % ist fiir den guten Zustand kleiner als 1 und
fiir den schlechten Zustand grofser als. Zahlungen in guten
Zustinden werden starker abgewertet, denn Zahlungen in
guten Zustanden sind nicht so wertvoll, wie Zahlungen in
schlechten Zustéinden. (Wenn K > 2 ist, dann ist es leider

untibersichtlicher.)

Wir betrachten wieder das Beispiel einer Lotterie mit P(X =
100) = 1/2 und P(X = 50) = 1/2. Wir nehmen an,
dass R/ = 1 ist und der faire Preis der Lotterie gleich
70. Wir hatten die Risikoneutralwahrscheinlichkeiten be-
stimmt: Q(X = 100) = 2/5, Q(X = 50) = 3/5. Dann ist
Q(X = 100)/P(X = 100) = 4/5 (also wie angekiindigt
kleiner 1 fiir den guten Zustand) und Q(X = 50)/P(X =
50) = 6/5 (also wie angekiindigt grofer 1 fiir den guten
Zustand).



Wir iiberpriifen px = E¥(mX)

O W~

1 1 1
100+ =---50==-80+ = - 60 = 70.
Jr2 2 +2

DO | —
Ut O

Bei dieser Form den fairen Wert zu bestimmen, werden die
Auszahlungen angepasst und die empirischen Wahrschein-

lichkeiten P verwenden.

1.8.19 Bemerkung: i.) Wir beobachten fiir erreichbare

Proﬁle X Vgl. Munk [?, Seite 97]

px = E(mX)
= EF(m)E"(X) + cov(m, X)
= 7 -E¥(X) + cov(m, X)
_E'X)
~

+ cov(m, X).

Der Preis des Wertpapiers ergibt sich also aus der diskon-
tierten erwarteten Auszahlung zuziiglich einer Risikoan-

passung cov(m, X) (die aber auch negativ sein kann).

Typischerweise — jedenfalls fiir viele Wertpapiere — gilt

px < Eﬂ;@, denn Anleger wollen fiir die Ubernahme von
1

Risiken entschédigt werden und zahlen deshalb weniger als

den diskontierten Erwartungswert. Also ist cov(m, X) ty-

: : : . _ EFX) :
pischerweise negativ. Geméif px = o+ cov(m, X) ist
1

also cov(m, X) dann ein Risikoabschlag, den der Anleger
als Kompensation fiir die Ubernahme von Risiken erwartet

(im obigen Beispiel betrigt der Abschlag 5 [von 75 auf 70]).



Im néchsten Abschnitten werden wir diesen Abschlag bzw.

die sogenannte Risikoprdmie nochmal untersuchen.

Fiir Finanzprodukte mit cov(m, X) > 0 ist der Preis so-
gar grofler als der diskontierte Erwartungswert. Finanz-
produkt mit cov(m, X) > 0 erzeugen einen Versicherungs-
effekt /Hedgingeffekt, der einen scheinbar zu hohen Preis
rechtfertigt (ndmlich grofer als der diskontierte Erwartungs-

wert).

Insbesondere gilt fiir Finanzprodukte mit cov(m, X) > 0

_E'X)

E"(X)
pPX =
Ry

R

+ cov(m, X) > = Dyuxl-
wobei py = E¥(X). Die Ungleichung px > p,,1 bedeutet,
dass X teurer (wertvoller) als ux1 ist, obwohl die beiden
Profile den gleichen Erwartungswert haben und die Lotte-

rie X riskanter als die konstante Zahlung ux1 (insbeson-
dere V(X) > V(ux1) = 0) ist.

ii.) Demnach ist insbesondere auch die Varianz der Zah-
lung eines Finanzproduktes kein geeigneter Malfsstab fiir
das bewertungsrelevante Risiko eines Wertpapiers. Be-
zogen auf die Bewertung ist es falsch Risiken isoliert zu
erfassen. Fiir die Bewertung ist die Kovarianz zum sto-

chastischen Diskontfaktor ausschlaggebend!



Gemaf

E(X)
R

PX = + cov(m, X).

erfasst die Kovarianz cov(m, X) den Risikoabschlag. Das

bewertungsrelevante Risiko wird also durch cov(m, X) er-

fasst und nicht durch V(X).

Fiir Wertpapiere mit cov(m, X) = 0 gilt insbesondere

Dy = E"(X)

)

selbst dann wenn und V(X) > 0.

1.8.20 Bemerkung (Give me five): Insgesamt kennen

wir jetzt 5 Bewertungsgleichungen:

px = 3 v(w)X(w)
k=1

px =3 P(wk)d(wk)xgjﬁ) — RF (d %)
k=1

px = Y Plwp)m(w)X(w;) = EF (mX)
k=1

« X(wr) o (X
x =) Qlup)—57- =E*| =5
p ; Y (Rf)

X

X = EP (ﬁ) + cov(m, X)

1.8.21 Bemerkung: Wir beobachten Vorzeichen von A Bei

Cochrane mit - Zeichen.



X
px =E" (ﬁ) + cov(m, X)
X R/V(m)
_wP ([ = _
=K (Rf> + RfV(m)COV(m’X)
_gP X N R’ V(m) cov(m, X)
Rf RS V(m)
_ P X N 1 V(m)cov(m, X)
- R R/E(m) V(m)
X 1
S ) _
=3 (Rf) + RfAmBXm
A = ?E% erfasst den Preis des Risikos und fOxm =
CO{,((I:‘II’)X ) das Ausmaf (die Quantitit) des Risikos. Ge-
méfs
X 1
_wP (= _
pPx = E (Rf> + Rf)\mﬁX,m
1

setzt sich der faire Preis fiir X aus drei Komponenten zu-

SAaININer:

X
RS

re der Preis bei Risikoneutralitit, wenn die Anleger

e Dem diskontierten Erwartungswert EF ( ) Das wa-
keine Kompensation fiir die Ubername von Risiko er-

warten wirden.

e Dem bewerteten Risiko fSx m des Wertpapiers. Das
Wertpapier mit der Auszahlung X ist riskant. Es ist
naheliegend dieses Risiko durch die Varianz zu mes-

sen und zu vermuten, dass eine hohere Varianz mit



einem geringerem Preis einhergeht. Das ist jedoch un-
genau. Wir miissen genau den 7Teil des Risikos erfas-
sen, der in den Preis fiir das Wertpapier eingeht. Die-

ser bewertete Teil ist Ox m; die skalierte Kovarianz.
e Dem (diskontierten) Preis des Risikos Ay,.

Die Anpassung fiir das Risiko ergibt sich aus dem Produkt
Bx m fir Ausmals des Risikos und dem Preis Ay, je Risiko.
Insgesamt — einschlieflich der Diskontierung — erhalten wir

die Anpassung %)\mﬁxm.

Hinweis zum Vorzeichen von \: In der Literatur — z.B.
in Cochrane |5, Seite 16] und Munk [35], Seite 97| — wird

X 1
px = E" (E) + ﬁ)\mﬁX,m

in der Form

X 1 -
_mwP )

mit Ay = —% angegeben. Mich verwirrt aber minus

minus und an dieser Stelle ist der (doppelte) Wechsel der
Vorzeichen aus meiner Sicht nicht niitzlich. Ich hoffe, dass
durch diesen Hinweis etwaige Missverstandnisse vermieden

werden konnen.

1.8.22 Beispiel: Es sei r = 5§ = 0.11, Sy = 5, Si(wy) =

%0, Si(wq) = %0. Py = %,pg = }L. Das EPFMM ist vollstindig



und arbitragefrei. Wir haben folgendes berechnet:

Risikoneutralwahrscheinlichkeit ¢ = 0.5,qo = 0.5
Zustandspreise 1y = 0.45, 19 = 0.45
Stochastische Diskontfaktoren mq = 0.6, my = 1.8

Wir beobachten, dass der erste Zustand der bessere ist,
denn dort ist die Auszahlung des riskanten Wertpapier ho-
her. Die Anleger sind risikoavers, denn der beobachtete

Preis Sp = 5, ist geringer als der diskontierte Erwartungs-
9 . (3.60 , 1 40\ _
wert 10 (Z'§+Z.§) = 5.9.

Die Risikoneutralwahrscheinlichkeit fiir den guten Zustand

ist niedriger als die empirische Wahrscheinlichkeit. .....
9 1 60 1 40
S=m=—em - — 4+ - —
100 \2 9 2 9

Auch am stochastischen Diskontfaktor kann man die An-

passung wegen der Risikoaversion ablesen.

s (3.6 60 118 40
~\4 10 9 4 10 9

sr_ (3.9.60,1 9 4
T o\4 10 9 4 10 9

Die Auszahlung im guten Zustand wird stark mit % dis-

anstatt

kontiert (anstatt mit <) und die Auszahlung im schlechten

Zustand sogar mit % vergrofsert.



Fiir die Replikation vergleiche https://www.mathstat.
de/EPFMM_1_1_2_ ff.Rbzw. https://www.mathstat.de/
EPFMM_1_1_2_1f.py

1.8.23 Beispiel: Wir betrachten jetzt (noch) ausfiihrli-
cher ein einfaches Beispiel und deklinieren alle Argumente

einschliefslich Interpretation durch. Es sei r = 0.1, .Sy = 10,

Si(wr) =125, Si(we) = 10. p = 3, p2 = 3.

Wir nutzen R oder Python und bestimmen die Risikoneu-
tralwahrscheinlichkeiten, die Zustandspreise und die sto-

chastischen Diskontfaktoren. Es gilt

Risikoneutralwahrscheinlichkeit ¢ = 0.4, ¢, = 0.6
Zustandspreise 1y = 0.36, 10 = 0.54
Stochastische Diskontfaktoren m; = 0.72, mgy = 1.09

1

Die wirklichen Wahrscheinlichkeiten sind p; = %,pg = 3

und der diskontierte Erwartungswert der riskanten Aus-
zahlung ist
1 /1 1
— | =125+ —=-10 ) = 10.22727.
1.1 (2 + 2 )
Das wéare bei Risikoneutralitat der Preis des riskanten Wert-

papiers. Gezahlt wird aber 10. In Geldeinheiten betragt der
Risikoabschlag demnach 0.22727.

Wir wissen schon, dass wir die Risikoaversion durch einen

Wechsel der Wahrscheinlichkeiten erfassen konnen und dann


https://www.mathstat.de/EPFMM_1_1_2_ff.R
https://www.mathstat.de/EPFMM_1_1_2_ff.R
https://www.mathstat.de/EPFMM_1_1_2_ff.py
https://www.mathstat.de/EPFMM_1_1_2_ff.py

die Risikoneutralbewertungsformel erhalten:

e SN _ 1
10=E (— ) =7(04-125+06-10)
r .

Wir rechnen mit pessimistischeren Wahrscheinlichkeiten.
Der gute Zustand wird unwahrscheinlicher und der schlech-

te wahrscheinlicher.

Ahnlich funktionieren Zustandspreise. Wenn Risikoneutra-
litdt gelten wiirde, dann héatte bei Zustidnde den gleichen
Wert (Zustandspreis); namlich 0.45. Im Vergleich zu die-
sem Benchmark wird der Zustandspreis des guten Zustand

herabgesetzt und der des schlechten Zustand herauf.

Ebenfalls ahnlich funktionieren stochastische Diskontfakto-
ren. Bei Risikoneutralitit diskontieren wir mit 1/1.1 = 0.90
und bilden den Erwartungswert mit den empirischen Wahr-

scheinlichkeiten:

10.22727 = 0.5 % (1/1.1)  12.5 + 0.5  (1/1.1) % 10
= 0.5%0.90 % 12.5 4 0.5 % 0.90 * 10

Um die Risikoaversion zu erfassen, rechnen wir mit sto-

chastischen Diskontfaktoren
10=05%0.72%12.5+ 0.5 % 1.09 % 10

Auch hier wird die Diskontierung zu Ungunsten des guten

Zustand angepasst.



Auch die vielleicht merkwiirdige Formel

1
po1 = EX (%) + cov(m, S

kann so leicht interpretiert werden
10 = 10.22727 — 0.22727

denn cov(m, S') = —0.22727. Die Kovarianz ist negativ
und deshalb erhalten wir einen Abschlag (wir miissen et-
was vom diskontierten Erwartungswert abziehen). Der Ab-
schlag in Hohe von 0.22727 ergibt sich, weil das Wertpapier
in dem Zustand wenig zahlt — namlich 10 — in dem wir ei-
ne Zahlung hoch bewerten (gering diskontieren) — namlich

mit 1.09 sogar aufzinsen.

Auch die Formel

St 1
pst = EF (ﬁ) + 2 AmBstm:

wird mit konkreten Werten leicht interpretierbar:

1
10 = 1022727 + - - 0.036 - (~6.875)

denn
= ) _ 35
E(m)
B cov(m, S*) B

= —6.875

ﬁSl,m - V(m)



1.9 Marktpreis des Risikos

Risikopramie
Risiko

1.10 Darstellungssatz von Riesz fiir SDFs

Wir betrachten zunéchst einige Resultate der linearen Al-

gebra und nutzen diese dann fiir die Herleitung der finanz-

wirtschaftlichen /finanzmathematischen Ergebnisse.

Dieser Abschnitt konnte Thre Geduld strapazieren. Viel-

leicht schauen Sie sich zuerst das zentrale Ergebnis ({1.10.8

an. Sie konnen dann entscheiden, ob Sie die Hintergriin-

de bzw. Beweise bendtigen oder ob Thnen das Ergebnis in

1.10.8

reicht.

1.10.1 Definition: Es sei V ein Vektorraum. Eine Abbil-

dung (-

) VXV =R, (x,y) — (x,y) heifst inneres

Produkt, falls fiir alle a1, a9 € Rund x,y,X1,¥y1,X92,y2 €

V gilt:

i.) (-, -) ist bi-linear

(X1 + oXa,y) = a1(X1,y) + @2(X2,y)
(X, a1y1 + aoy2) = ai(X,y1) + @2(X, y2)

ii.) (-, -) ist symmetrisch (x,y) = (y, x).



iii.) (-,-) ist positiv definit. (x,x) > 0 fiir alle x € V
und (x,x) > 0 falls x # 0.

.....

auf R" das sogenannte Standardskalarprodukt definiert.

ii.) Gilt aex = b e x fiir alle x € R”, dann ist a = b.

1.10.3 Satz: Essei A eine Matrix mit Spalten a; € R, i =
I,...,d und (-, -) ein inneres Produkt auf V' = Col(A) =
Spann(ay, ...,a,); V ist der von den Spalten von A aufge-

spannte Vektorraum.

Dann gilt fir x,y € V:

wobei die Eintrige von x® € RY die Koeffizienten von
x = x{a; + ... + xja, beziiglich des Erzeugendensystems

{ai,...,aq} des Vektorraums Col(A) sind (analog fiir y“)

und

(<a1,31> (al,ad>\
(A A) =

K<ad,a1> <ad,ad>)



1.10.4 Definition: Es sei A eine Matrix mit Spalten a; €
RA i =1,...,dund (.,.) ein inneres Produkt auf dem Vek-
torraum V' = Col(A) = Spann(ay, ...,
die d x d Matrix

ag). Wir definieren

((al, a1> <a1, ad>\

(A A) = c R4

\(ad,aﬁ (ad,adu

1.10.5 Satz: Es sei A eine Matrix mit linear unabhangi-
gen Spalten a; € R® i =1,...,d und (.,.) ein inneres Pro-
dukt auf dem d-dimensionalen Vektorraum V' = Col(A) =

Spann(ay, ...,a,). Die d x d Matrix

((al,a1> <a1,ad>\

(A,A) = c R4

\(ad,a1> (ad,adu

1st invertierbar.

Beweis (siehe Hoffmann und Kunze |19, Seite 274 f|): An-
genommen (A, A) wire nicht invertierbar. Dann gibt es
x¢ # 0 mit

(A, A)x" =0.
Dann mit x = Ax®

(x,x) = (x")' (A, A)(x") = 0

die Voraussetzung l.u. ist
fiir spéter (Invertierbar-
keit) notwendig. Die Defi-
nition kann man auch oh-
ne die Definition ausspre-
chen.

Gram Matrix? AAT oder
ATA, wenn Standardska-
larprodukt?

(A,A) = ATPA; immer
von dieser Form?



Dann muss x = 0 sein, denn (., .) ist gemif Annahme ein
inneres Produkt. Also 0 = Ax®, so dass x* = 0 (denn die
Spalten von A sind linear unabhéngig). Wir erhalten einen

Widerspruch.

» Wir bendtigen die folgende Variante des Darstellungs-
satz von Riesz (vgl. z.B. Garcia und Horn [T}, S. 177]).

1.10.6 Satz: Es sei A eine Matrix mit linear unabhangi-
gen Spalten a; € R, i =1,...,d und f : Col(A) — R eine
lineare Abbildung (ein sogenanntes lineares Funktional auf
Col(A)) und (-,-) ein inneres Produkt. Dann gibt es ein
eindeutig bestimmtes y € Col(A) C R® mit

f(x) = (x,y),x € Col(A).

In der Tat gilt

flai)
y=A(AA)T ] .| =A(AA)Tf(A),
f(aq)
wobei wir kompakt
fla1)
flA) =1 .. | eRr?
f(aq)

schreiben.

oder auch Axler [?, Seite
205]

Gibt es einen
Zusammenhang zur Form
(1.6.5)7



» Das bemerkenswerte ist, dass y € Col(A) ist. Wir wer-

den (natiirlich) A als eine Auszahlungsmatrix eines EPFMM

auffassen. y € Col(A) bedeutet dann, dass y erreichbar
ist. Wir werden sehen, dass das eindeutig bestimmte y €
Col(A) mit der im Satz genannten Darstellungseigenschaft

ein besonders niitzliches erreichbares Profil ist.

» Wir werden jetzt den Satz von Riesz mit der Bewertung
von erreichbaren Profilen in Verbindungen bringen. Wir
benotigen dafiir noch das folgende Resultat. Es wird ein

neues Skalarprodukt eingefiihrt.

1.10.7 Satz: Es sei PP ein diskretes Wahrscheinlichkeits-
mal mit P(w) > 0 fiir alle w € Q fiir ein endliches Q =

Wie soll ich mit der ers-
ten Spalte von A umge-
hen? ..... =1

{wi, ...,wg }. Fiir Zufallsvariablen X, Y definieren wir (X, Y) =

EY(XY). Dann ist (-, -) ein inneres Produkt.

» Wir bezeichnen das Standardskalarprodukt von x,y mit
xey = > ., . x;y; und verwenden die spitzen Klammern

fiir das oben eingefiihrte Skalarprodukt

<X7Y> = EP(XY> = | Z PiZiYi-

1.10.8 Satz: Wir betrachten ein arbitragefreies EPFMM
mit der Auszahlungsmatrix A. Fiir alle erreichbare Profile
X € Col(A) sei px der eindeutig bestimmte faire Preis der
erreichbaren bedingten Auszahlung X.

i.) Fiir erreichbare Profile X bzw. Y in Col(A) und reelle



Zahlen a,b € R gilt:

PaX+bY = apx + bpy.

Die Abbildung (der Bewertungsoperator) p(., : Col(A) —

R, X — px ist also linear (also ein lineares Funktional auf

Col(A)).

ii.) Wir betrachten ein arbitragefreies EPFMM mit der
Auszahlungsmatrix A. Die Spalten von A seien zudem li-
near unabhéngig (d.h. Rang(A) = N + 1). Es gibt ein

eindeutig bestimmtes x* € Col(A) mit Zusommenhang
(1.6.5)?

px = (x*,X) = EF (x*X).

ES gllt lIl del" Tat ..... x* sieht wie eine SDF
aus ist aber i.A. nicht » 0,
oder?. Gegenbeispiel?

x* = A((A,A))!S,.

An dieser Formel kann
man direkt ablesen, dass
x* in Col(A) liegt.

1.10.9 Bemerkung: Gemék
px = (x*,X) = E' (x*X).

kénnen wir Bewertungsprobleme mit x* als px = EF(x*X)
schreiben, d.h. x* funktioniert wie ein stochastischer Dis-
kontfaktor. Die Existenz von x* ergab sich (schon) aus der
Linearitat von p(.y. Der Satz von Riesz stellt jedoch nicht
x* > 0 sicher, so dass x* nicht notwendigerweise ein SDF

ist. Andernorts heift ein x* mit px = EF(x*X) schon SDF.



Vgl. auch Back [I], Seite .....].

1.10.10 Bemerkung: Es gibt einen engen Zusammen-
hang zu Projektionen (vgl. z.B. Back [I], Seite .....]). Wir
betrachten dafiir Zustandspreise, da dieser Fall besonders
transparent ist. Wenn Arbitragefreiheit gilt, dann gibt es
Zustandspreise ¥ > 0 mit

Al =S,

Wie oben leitet man eine Riesz Darstellung AT4p* = S, * €
Col(A) mit Vektor 9p* = A(ATA)71Sy ab. Wir beobach-

ten dann:

P = AATA)'S,
= AATA) ATy
= Pcoa)¥

Also ist ¥* die Projektion von 1) auf Col(A); vgl. Meyer
133, Seite 430].

Wenn man Zustandspreise hat, dann kann man so leicht
1" bestimmen. Der Satz von Riesz liefert 1p* direkt gemélfs
P = AATA)™1S,

Trotzdem ist es gut zu wissen, dass ¥* die Projektion von
1. Vgl. dazu Back [I, Seite .....| und Cochrane [5], Seite

..... I

1.10.11 Beispiel: Siehe R Code b zu unvollstandigen Méark-



ten.

1.11 o-minimale Zahlungsprofile

In wohl jedem Buch iiber Finanzwirtschaft (mathematisch
oder nicht) werden p-o-optimale Anlageformen erldutert.
Die origindren Arbeiten stammen von Markowitz (vgl. [31]
und [32]). Wir werden bestimmte Aspekte dieser Analyse
jetzt in fir uns passender Form behandeln; namlich mit
fiir die Bewertung relevanten Aspekte. Das Thema greifen

wir spater nochmal in der klassischen Form auf.

Es wird sich zeigen, dass wir sehr weitreichende Resultate
erhalten, die zudem unsere Intuition schéarfen. Dieser Ab-

schnitt orientiert sich an Skiadas [46, Kapitel 1 und 2].

1.11.1 Definition: Ein Zahlungsprofil X* heifst c-minimal,

V(X*) = m}én{V(X) | px = px+ und E(X) = E(X")}.

Also: Jedes andere im Vergleich zu X* gleich teure Zah-
lungsprofil X mit der gleichen erwarteten Auszahlung hat

eine mindestens so hohe Varianz wie X*.

1.11.2 Bemerkung: Das EPFMM sei arbitragefrei und
die Auszahlungsmatrix A habe vollen Spaltenrang (die Spal-

ten von A sind linear unabhéngig). Es sei zudem 1 €



Col(A) und x* € Col(A) das geméf Satz [1.10.8| eindeu-
tig bestimmte Profil mit px = (x*,X) = EF(x*X), X €

Col(A)[H]

Dann beobachten wir
7 =p1 = EF(x*1) = EF (x¥).

Also

1
Pro*y =
wobel wir einerseits die Notation Z = p;y einfithren und
andererseits beachten, dass R/ die Bruttoverzinsung der

sicheren Anlageform bezeichnet.

1.11.3 Bemerkung: i.) Das EPFMM sei arbitragefrei und

die Auszahlungsmatrix A habe vollen Spaltenrang (die Spal-
ten von A sind linear unabhingig). Es sei zudem 1 €

Col(A) und x* das geméf Satz(1.10.8 eindeutig bestimmte

Profil mit px = (x*, X) = E¥(x*X).

Wenn die Vektoren x* und 1 linear abhangig sind, dann
gilt fiir alle X € Col(A)

px = E(x*X) = ZE(X) = %E(X).

Also haben alle erreichbaren Wertpapiere die erwartete Ren-

dite R/. Das wire ein sehr langweiliges/triviales Finanz-

“Diese Voraussetzung ist erfiillt, wenn die Anleger Zugang zu einer risikolosen
Anlageform haben.



marktmodell.

ii.) Wenn die Vektoren 1 und x* linear unabhéngig sind,

dann gilt
22 7& Dx*-

1.11.4 Satz: Die Auszahlungsmatrix A eines arbitrage-
freien EPFMM sei vom Rang d = N + 1 (so dass die Spal-
ten linear unabhingig sind™)). Auf Col(A) betrachten wir
das innere Produkt (X,Y) = EF(XY). Es sei 1 € Col(A)
und x* € Col(A) das geméf des Satzes von Riesz [1.10.6

eindeutig bestimmte Profil mit der Eigenschaft
px = (x*, X) = E'(x*X).

fir alle X € Col(A). Zudem seien 1 und x* linear unab-
hangig.

Dann gilt: Ein Zahlungsprofil X* € Col(A) ist genau dann

o-minimal, wenn es Skalare a,b € R mit

X =al+bx"
als ZV: X* =a+ bx*

gibt.

1.11.5 Bemerkung: Die beiden linear unabhéngigen Vek-

toren 1 und x* spannen alle o-minimalen erreichbaren Pro-

15Keines der Finanzprodukte ist redundant.



file auf. Die Menge der o-minimalen Profile bilden also

einen 2-dimensionalen Unterraum des R,

Die Profile der Form a1 haben die Varianz Null. Diese
Profile sind also von global minimaler Varianz. Der faire

Preis ist p,g = aZ und die Bruttorendite ist R/.

Man kann von R nach oben abweichende erwartete Rendi-
ten erzielen, wenn man bx* zu al addiert. Man erhélt eine
hohere erwartete Rendite und eine hohere Varianz. Dies

geschieht dann auf o-minimale Weise.

1.11.6 Bemerkung: Fiir den etwaigen spateren Gebrauch
notieren wir noch die folgende Beobachtung. Die Menge
der o-minimalen Profile bilden einen 2-dimensionalen Un-
terraum. Man kann demnach auch zwei andere linear un-
abhidngige o-minimale Profile als Basis des Raums der o-

minimalen Profile wahlen. .....

» Das folgende Lemma benotigen wir in einem Beweis des

nachsten Abschnitts. Fiir sich betrachtet ist es technisch.

1.11.7 Lemma: Die Auszahlungsmatrix A eines arbitra-
gefreien EPFMM sei vom Rang d = N+1 (so dass die Spal-
ten linear unabhéngig sind). Auf Col(A) betrachten wir
das innere Produkt (X,Y) = EF(XY). Es sei 1 € Col(A)
und x* € Col(A) das geméf des Satzes von Riesz [1.10.6




eindeutig bestimmte Profil mit der Eigenschaft
px = (x*, X) = B (x*X)

fir alle X € Col(A). Zudem seien 1 und x* linear unab-
hangig.

X* ist genau dann ein o-minimales und nicht-konstantes

Profil, wenn es einen Skalar b # 0 gibt, so dass fiir alle X

X
px = EF (ﬁ) + beov(X*, X)
1

gilt.

1.11.8 Bemerkung: Im Beweis oben fallt 0 und damit
die Koeffizienten «, 8 von X* = ax* + 1 vom Himmel.
Wir wollen uns iiberlegen, wie man die Koeffizienten finden

kann.

Wir beobachten zwei Wege die faire Preis px zu bestimmen:

px = EF (x*X) = EF (x*)EF(X) 4 cov(x*, X)
1

= EEP(X) + cov(x*, X)

X *
=K (ﬁ) + cov(x*, X)

und

X
Px = EP (ﬁ) + bCOV(X*, X)



Dann beobachten wir weiter

bcov(X*, X) = cov(x*, X)
< beov(ax® + 1, X) = cov(x”, X)

& beov(ax®, X) = cov(x*, X)

S =

Also a =

Also

1

Wir miissen noch 3 bestimmen. Das geht noch einfacher:  kann man mit dem ar-

gument aus dieser Bemer-
kung den Beweis f{iber-

1 1 sichtlicher machen?
E(X*) = -—
= 0 =EX*) — ——

1.11.9 Take away: Wir betrachten ein arbitragefreies EPFMM
mit Auszahlungsmatrix A. Die Spalten von A seien linear
unabhéngig und es gelte 1 € Col(A). Wir betrachten das
innere Produkt (X,Y) = EF(XY) auf Col(A). Ferner sei

x* das eindeutig bestimmte Profilt mit

px =E(xX)=E (%) + cov(x*, X), X € Col(A).

Die Menge der varianzminimalen Portfolio bilden einen
zwei dimensionalen Unterraum vom Col(A) mit der Ba-

SIS Liefert A(ATA)™1§,
Kandidaten fiir
Zustandspreise?



x* = A((A,A))!S; und 1.

1.12 Risiko und Rendite

Es ist ein Gemeinplatz, dass eine hohere erwartete Ren-
dite und ein hoheres Risiko zusammen gehéren. Diese (so
noch ungenaue) Aussage wird in diesem Abschnitt genau-
er betrachten und in einen zentralen Zusammenhang zum
stochastischen Diskontfaktor gebracht. Wir erhalten eine

berithmte -Darstellung fiir die erwartete Rendite.

Diese (-Darstellung dokumentiert eine sehr wichtige Be-
obachtung. Es ist unzutreffend, dass eine héhere Varianz
eines Wertpapier per se mit einer hoheren erwarteten Ren-
dite einher geht. Vielmehr geht ein hoheres S mit einer

hoheren Renditen einher.

1.12.1 Definition (Renditen): Es sei px > 0. Dann de-

finieren wir die Renditen:

Bruttorendite

und Rendite

pPxX pPx

—1

r

Renditen entsprechen Zahlungsprofilen mit Preis 1.

Alle Renditen in der Q-
Welt sind 7.



1.12.2 Bemerkung: Es sei m ein stochastischer Diskont-

faktor und R = % eine Bruttorendite.

i.) Es gilt
FP(R) = ——  fpamm
EF(m) o
wobel
5 ~ cov(R, m)
R,m - V]P)(m) I
L VE(m)
% EP(m)

ii.) Wir betrachten die risikolose Anlageform mit konstan-

ter Rendite R/. Dann gilt natiirlich cov(m, R/) = 0. Dann

folgt R/ = Epém) (das haben wir schon mal hergeleitet).

Also gilt'9

E'(R) = R/ — BrmAm-

Pr.m misst das bewerte Risiko des Wertpapiers. Das be-
wertete Risiko entsprecht der skalierten Kovarianz zum sto-
chastischen Diskontfaktor B ) heigt Marktpreis

VP (m)
des Risikos.

Die erwartete Wertpapierrendite EF(R) setzt sich aus drei

Teilen zusammen. Eine Zeitwertvergiitung R' und eine Ri-

8Gilt cov(m, R) > 0 bzw. dquivalent Sr m > 0, dann erzeugt R einen Hedging-
effekt. Der Preis des Finanzprodukt ist relativ hoch und die erwartete Rendite
relativ niedrig.

Andere Autoren (Camp-
bell, Cochrane) verwen-
den bei Am ein anderes
Vorzeichen. Warum?



sikovergiitung Sr.mAm, wobei die Risikoverglitung aus zwei
Komponenten besteht: Aus dem Preis des Risikos A, und
dem Risiko gemessen durch Sr . Bemerkenswert ist, dass
das Risiko nicht allein von der Verteilung der Rendite R
(oder die Varianz von R) abhéngig ist, sondern die Kovari-
anz zum stochastischen Diskontfaktor entscheidend ist. Fiir
die Risikoprémie ist also nicht das isoliert betrachtete Risi-

ko V(R) relevant, sondern das bewertete Risiko cov(R, m).

iii.) Wir bemerken noch, dass fr m ein Regressionskoeffizi-

ent ist [l

iv.) Die Wertpapierrendite definieren wir durch r = R —

1= 815;050 Dann gilt

E(r) — r/ = (—Brm) * Am

v.) Wir hatten schon bemerkt, dass Sg m ein Regressions-
koeffizient ist. Das ist grofartig, da es zur statistischen
Analyse einladt. Allerdings ist zunachst nicht klar, wie wir
diese Beobachtung in einer empirische Regressionsanalyse
umsetzen sollen. Dazu benotigten wir Daten fiir m, die wir
typischerweise nicht direkt haben. Hier hilft der néichste
Satz, der das Hauptresultat dieses Abschnitt ist.

1.12.3 Satz: Wenn X* ein o-minimales nicht konstantes

17Siehe Hansen [13] Seite 42].



Profil ist, dann gilt

P _ cov(R,RY)
E*(R) - R| = VIR

= PR R* (EP(R*) - Rf)

(EP(R*) _ R/ )

» Opx gx+ erfasst das bewertungsrelevante Risiko und

RX — R{ den Preis des Risikos.

1.12.4 Bemerkung: Es gibt also genau dann eine S Re-
prasentation, wenn die Rendite beziiglich derer die Repré-
sentation gebildet wird, o-minimal ist. Im CAPM ist X*
das Marktprofil und RX" die Marktrendite. Das CAPM gilt

also, wenn das Marktprofil o-minimal ist.



2 Mehrperiodenmodell

In diesem Kapitel werden dynamische Modelle entwickelt.
Wiéhrend im vorhergehenden Kapitel lediglich eine Periode
betrachtet wurde, ist die Zahl der Perioden in diesem Ab-
schnitt eine beliebige natiirliche Zahl N € N. Dadurch kon-
nen wir zweil wichtige Aspekte des Finanzmarktes erfassen:

(1) Information und (2) Strategie.

» Einschligige Quellen zu Binomialbaummodellen sind Shre-
ve [44], Jarrow und Chatterjea [27|, Jarrow und Turnbull
|26, Hull [14] und natiirlich die originire Quelle Cox, Ross
& Rubinstein [6]. Uber das Thema der Implementierung
kann man sich insbesondere bei Seydel (2017) [43, Ab-
schnitt 1.4] und Roman (2017) [39, Kapitel 2| informieren.

2.1 Binomialbaummodell

2.1.1 Ein-Perdioden-Modell

2.1.1 Definition (Einperiodenbinomialbaummodell):
Das Einperiodenbinomialbaummodell (EPBBM) ist durch



die folgenden Angaben beschrieben:

e Anleger haben Zugang zu einer risikolosen Anlage-
form mit Zinssatz r > —1. Wir stellen uns diese An-
lagemoglichkeit als Geldmarktkonto vor. Diese An-
lageform konnte auch die Anlage in nicht durch Zah-
lungsausfall bedrohte Anleihen mit einer Restlaufzeit
von einer Zeiteinheit sein. Den Betrag in Geldein-
heiten (GE), der auf dem Geldmarktkonto angelegt
wird, bezeichnen wir mit M; € R (M fiir Money).

e In ¢t = 1 tritt einer von zwei Zustdnden ein: () =
{wg,wr}. Es gilt 0 < P({wg}) = p < 1. p heifst Er-
folgswahrscheinlichkeit und H bzw. T steht fiir hoch
respektive tief. Wir wahlen als o-Algebra die Potenz-
menge F = P(£2). Das Risiko wird durch den Wahr-
scheinlichkeitsraum (€2, F,P) erfasst.

e Anleger konnen in ein riskantes Wertpapier investie-
ren, das in ¢t = 0 fiir Sp > 0 gehandelt wird und fiir

dessen t = 1 Preis

0 < Si(wy) =uSy  bzw.
0 < Sl(wT) = dS()

gilt. Ferner unterstellen wir 0 < d < w.

d steht fiir down und u fiir up. Wir setzen nicht not-
wendigerweise d < 1 bzw. w > 1 voraus, so dass

,down" bzw. ,up“ strenggenommen missverstandlich



ist. Fiir die Anzahl der gekauften Wertpapiere

verwenden wir Aq.

Schematische Darstellung des EPBBM

Sl(wH)
h)e!
D
So
NG
] ~
Yo
Sl(OJT>

2.1.2 Definition: Eine Anlagestrategie h = (M, A;)!
des EPBBM heift Arbitrage, wenn|]

i) VI = My + A1Sy = 0, d.h. die Anschaffungskosten
Vi der Anlagestrategie (M, A1)? betragen 0.

i) Vi = Mi(1+7)+ AuSi(w) > 0 fiir w = {wy,wr}

und

i) Vit = Mi(1+7) + A1Si(w) > 0 fiir w = wy oder fiir

W = Wwr.

Das EPBBM heifst arbitragefrei, wenn es keine Arbitrage
gibt.

'Die (Zeit-)Indizes von M und A sind zuniichst merkwiirdig, denn iiber diese
Werte wird doch in 0 entschieden!? Wir wihlen die Indizes bei Handelss-
trategie mit einer zeitlichen Verschiebung, da wir dann spéter bequem das
Konzept predictable einfiihren kénnen. Die Variablen M; und A; beziehen
sich auf den Zeitraum von 0 bis 1 (Halteperiode).




2.1.3 Bemerkung: Gilt Arbitragefreiheit und ist M; +
A1Sy = 0, dann gilt Mi(1 + 1) + ASi(w) = 0 fir w =
wp, wr oder mindestens einer der Werte My (1+7)+A151(w)

ist negativ.

In der Tat: Angenommen M (1 + )+ A1S1(w) # 0. Wire
Mi(147)+A1Si(w) > 0 fiir beide w, dann wire (M7, Aq)?
eine Arbitrage. M;(1+7r)+A151(w) < 0 kann aber ebenfalls
nicht gelten, dann das wire (—Mj, —A;)? eine Arbitrage.
Also muss es ein w mit Mi(1+7r) + A151(w) < 0 und ein
w mit My(147r)+ ApSi(w) > 0 gelten.

2.1.4 Bemerkung: Wie fiir den Fall des EPFMM ist es
auch hier zweckmalfig, die Auszahlungsmatrix der Aus-

gangsanlagemoglichkeiten zu definieren:

A (1 +r Sl(wH)> _ (1 +r uS())
147 Si(wr) 1+17r dSy
In der ersten Zeile stehen die Auszahlungen fiir w = wy
und in der zweiten Zeile stehen die Auszahlungen fiir w =
wp. Die Matrix hat wegen d < v den Rang 2 und ist somit
invertierbar. Die Auszahlung eines Portfolio R? 3 h; =
(My, Ayt st V?l = Ah;. Da die Matrix A invertierbar
ist, kann jedes 2-dimensionale Auszahlungsprofil X € R?

mit h; = A~'X eindeutig repliziert werden.

2.1.5 Satz: Das EPBBM ist (wegen d # wu) vollstén-
dig. Es gilt sogar folgendes: Fiir jedes Auszahlungsprofil



Vi = (Vi(wg), Vi(wr))! existiert eine eindeutig bestimm-
te Replikationsstrategie h; = (M, A;)”.

2.1.6 Satz: Im EPBBM gilt genau dann Arbitragefreiheit,
wenn d < 1 +7 < u gilt ]

2.1.7 Bemerkung: Die Intuition fiir den letzten Satz liegt
auf der Hand. Wire beispielsweise 1 +r < d < u, dann ist
die Geldleihe so giinstig, dass ein Investor selbst fiir w = wp
in der Lage ist, aus dem Kursgewinn der riskanten Anla-
ge, etwaige Schulden zu tilgen. Unter solchen Umstanden
kann ein Investor mit geliehenen Geld Wertpapiere kaufen
und einen sicheren nicht-negativen von Null verschiedenen

Gewinn realisieren.

2.1.8 Definiton: Ein Wahrscheinlichkeitsmaf Q auf (€2, F)

heift Risikoneutralwahrscheinlichkeitsmalfs, wenn

1) ¢:=Q{wn}) > 0,Q{wr}) >0,

ii.) Der aktuelle Preis des Basiswertpapiers ergibt sich

gemal Risikoneutralbewertungsprinzip:

S, = EC 5
1+7r

2.1.9 Satz: Im EPBBM mit d < 1 4+ r < u ist das Risi-

*Beachte, dass die Ungleichung d > 0 als Generalvoraussetzung weiter gelten
soll.



koneutralwahrscheinlichkeitsmafs durch

14+7r—d

QiH}) =q=——

gegeben.

2.1.10 Bemerkung: Wir notieren die folgenden Aquiva-

lenzen:

0<g<l&e 0<d<1l+r<u<& Arbitragefreiheit.

2.1.11 Bemerkung: Wenn man die Geldmarktverzinsung
anstatt in der Form 1 4 r in der Form e" angibt, dann ist
die Risikoneutralwahrscheinlichkeit gleich

e —d
u—d

q:

2.1.12 Bemerkung (Bewertung durch Replikation):
Da ein arbitragefreies EPBBM vollstandig ist, konnen wir
ein beliebiges Zahlungsprofil V| = (Vi(wg), Vi(wr))! auch
mittels Replikation bewerten. Dazu ermitteln wir die repli-
zierende Strategie. Die Anschaffungskosten der replizieren-

den Strategie entsprechen dann dem fairen Preis.

2.1.13 Satz (Risikoneutralbewertungsprinzip): Ge-
geben sei ein arbitragefreies EPBBM mit 0 < d < 1+r < u
und ein beliebiges Zahlungsprofil Vi = (Vi(wg), Vi(wr))!.



In ¢ = 0 ist der faire Preis dieses Zahlungsprofils

1

Vo = m(q%(wﬂ) + (1= ¢q)Vi(wr))

1
1+7r

E°(V4).

Fiir alle Zahlungsprofile gilt demnach das Risikoneutral-

bewertungsprinzip.

2.1.14 Bemerkung: Wir erhalten also das bemerkens-
werte — und uns schon gelaufige — Resultat, dass die An-
schaffungskosten des replizierenden Portfolios dem diskon-
tierten Erwartungswert der Auszahlung entsprechen, wo-
bei die Diskontierung mit dem risikolosen Zins vorgenom-
men und der Erwartungswert mit der Risikoneutralwahr-
scheinlichkeit berechnet wird. Wir bemerken also: Das Ri-
sikoneutralbewertungsprinzip — das gemafs Defini-
tion fiir die Basiswerte gilt — iibertragt sich auf alle
Anlagestrategien. Wegen der Vollstandigkeit iiber-
tragt sich das Risikoneutralbewertungsprinzip (so-

gar) auf alle bedingten Auszahlungen.

» Das EPBBM ist eine andere Formulierung des EPFMM
mit KA = 2. Das EPBBM wurde erlautert, weil dann die No-
tation des Binomialbaummodells mit N Perioden leichter
erfasst werden kann. » Das EPBMM reprasentiert einen s vore i Anzahi der

riskanten WP ......

Zweig des Binomialbaums .....



2.1.2 Binomialbaummodell: 2 Perdioden

dann nr Perdioden

2.1.15 Definition: Das Zweiperiodenbinomialbaum-
modell (ZPBBM) ist durch die folgenden Angaben be-

schrieben:

e Es gibt zwei Perioden und drei Zeitpunkte t = 0,1, 2
(T ={0,1,2}).

e Anleger konnen fiir den Zinssatz r > —1 Geld sicher
anlegen bzw. Kredite aufnehmen. Dieser Zinssatz ist

in beiden Perioden gleich 7.

e Das Risiko wird durch den folgenden Wahrscheinlich-
keitsraum (€2o, F, P) erfasst:

Qy = {(w1, w2) w1, ws € {wy,wr}}
= x Q1,0 ={wy,wr}
F = P(Qy),

und

P({(wy,wn)}) = p°,
P<{(WH7MT)}) — P({<WT7 WH)}) — p(1 — p)?
P({(wr,wr)}) = (1 —p)°

Fir das ZPBBM ist der Wahrscheinlichkeitsraum der
2-fache Produktwahrscheinlichkeitsraum von (€21, Py),



wobei (€21, Py) der Wahrscheinlichkeitsraum des EPBMM
ist. Der Wahrscheinlichkeitsraum ist also ein unab-
hangig wiederholtes Bernoulliexperiment mit 2 Wie-

derholungen und der Erfolgswahrscheinlichkeit p.

e Anleger konnen in ein riskantes Wertpapier investie-
ren, das in t = 0 fiir Sy > 0 gehandelt wird. Der
Preis des Wertpapiers in ¢ = 1 ist die Zufallsvariable
S1 = S1(wr, wo) miﬂ

Si(wr) = Si(wr, w2) = dSp, we € {wpy,wr}

Si(wr) = Si(wh, w2) = uSy, ws € {wy, wr}

Der Kurs in ¢ = 1 ist entweder Si(wg) = uSy oder
Si(wr) = dSp; bei Sy lassen wir die fiir den Wert
von S wrrelevante zweite Dimension gelegentlich weg.
Dass der Kurs in ¢ nicht vom Wert von wy abhéngig
ist, ist selbstverstindlich: Der Kurs in ¢ = 1 nimmt
naturgemék keine Zustande der nichsten Periode vor-

weg; die sind noch nicht eingetreten.

In t = 2 ist der Preis des Wertpapiers die Zufallsva-

3Beachte, dass formal S;(wr) und S;(ws) nicht definiert sind, denn die Zufalls-
variable S; ist gemdft Definition einer Zufallsvariable von zwei Argumenten
abhéngig. S; hingt aber nicht dabei ab, welchen Wert wy annimmt. Deshalb
ist es iiblich, wy wegzulassen.



riable Sy = Sy(wq, wy) mit

So(wp,wy) = u?S,
So(wpr, wr) = So(wr, wrr) = udSy

SQ((,UT, wT) = d2S()
Ferner nehmen wir an, dass 0 < d < u gilt.

Anleger kénnen ihr Portfolio nicht nur in ¢ = 0 wah-
len, sondern zudem in ¢ = 1 anpassen; und zwar
je nach Information iiber die Kursentwicklung. Mit
(M, A)T' € R? bezeichnen wir das t = 0 Port-
folio. Anleger beobachten die Preisentwicklung des
Wertpapiers. Sie konnen dementsprechend ihr ¢ = 1
Portfolio in Abhéngigkeit der ersten Dimension w;y
von (wy,ws)? wihlen; wy kennen die Anleger noch
nicht! Fiir den Fall, dass der Preis zunéichst steigt
— also w; = wpy ist —, verwenden wir die Notation
(My(wrr), Ao(wp)) s und (My(wr), As(wr))! wenn der
Preis zunéchst fillt. Die drei Vektoren (6 Zahlen)

(My, Ay)", (May(wp), Ag(wn))', (Ma(wr), Ao(wr))”

heiken Anlagestrategie.

Der Wert Vi, = A1.Sy + M; erfasst die Anfangskos-
ten bzw. Anschaffungskosten bzw. Anfangs-
wert der Strategie —die in t = 0 anfallen. V (w1, wq) =
(147) Ma(w1)+Ag(wq)S2 (w1, we) erfasst die Auszah-



lungen der Strategie, die sich in ¢ = 2 ergeben.

e Das folgende Diagramm zeigt die

Schematische Darstellung des ZPBBM

" Sl (wH) QFE)]W
I T Semwr) = uds:

]\& %' SQ((,UT, CUH) = duS()
£ Sl (wT) CUT
# SQ((,UT, (,UT) = d2S0

2.1.16 Definiton: Eine Anlagestrategie des ZPBBM
(M, )", (Ma(wr), Do(wr))'s (Ma(wr), Ao(wr))”
heift selbstfinanzierend, wenn fiir alle w € {wy, wr}
M- (1+7r)+ A Si(w) = My(w) + Ag(w) - S1(w)
gilt.

My-(1+7)+ A1+ Si(w) ist der Wert int =1desint =0
angeschafften Portfolios und Ms(w) + As(w) - St1(w) sind
die Kosten/Wert des Portfolio, wie es in ¢ = 1 angeschafft
wird. In £ = 1 wird demnach weder Geld entnommen noch
muss Geld ergidnzt werden. Die Umschichtung von M7, A4

auf My, Ay finanziert sich (in diesen Sinn) selbst.



2.1.17 Definiton: Das ZPBBM heifst arbitragefrei, wenn
es keine selbstfinanzierende Anlagestrategie mit Anschaf-
fungskosten V, = 0 gibt, so dass die Auszahlung 0 # V5 > 0

nicht-negativ aber von Null verschieden ist.

2.1.18 Bemerkung: Wenn es eine Anlagestrategie mit
Vo = 0und 0 # Vi > 0 gibt, dann gibt es eine Arbi-
tragemoglichkeit.

» Wie schon vorher wollen wir fiir den Fall der Arbi-
tragefreiheit Risikoneutralwahrscheinlichkeiten zur Bewer-
tung nutzen. Wir haben die P-Welt als zweifache Wieder-
holung eines unabhéngigen Bernoulli-Experiments mit Er-
folgswahrscheinlichkeit p modelliert. Um in die Q-Welt zu
gelangen, miissen wir nur die Erfolgswahrscheinlichkeit ge-

eignet wihlen/finden.

2.1.19 Definiton: Ein Wahrscheinlichkeitsmaf Q auf (92, P(£2?))

heifst Risikoneutralwahrscheinlichkeitsmal des ZPBBM,

Wernn

i.) Q ist das Wahrscheinlichkeitsmaf der zweifachen un-
abhingigen Wiederholung des Bernoulli Experiments
mit Ergebnisse (2 = {wy, wr} und Erfolgswahrschein-
lichkeit ¢ > 0.



L+r I+ 147
und
S
Si(wi) = EY (1 fr) (wr)
So(wy, w
= Q(wy = wy|w = wp) 2(1 i . )
So(wgy, w
+ Q(wy = T|w1 = wpg) 2(1 i ; 7)
_ Salw, wir) (- )Sg(wH,wT)
L+r IL+r
S
(1) = E? (122 wn
So(wrp, w
= Qw2 = wy|w; = wr) 2(1 f_ ; )
So(wr, w
+ Q(WQ = T‘w1 = wT) 2(1 j_ . T>
_ Sy(wr, wh) (1 )Sz(wT,wT)
L+r l+r
_ C]SQ(WT,CUH) + (1 — Q)SQ(CUT, wH)

1+7r

wobei wir wegen der unterstellten Unabhangigkeit
Qwz = wplwr = wr) = Qws = wplwr = wy) =
und Q(ws = wrlwy = wr) = Q(ws = wrlwy = wy) =

1 — g verwenden konnen.

Wir beachten, dass S;(H) i.A. nicht gleich E© (%) ist;

sondern gleich EY (%) (wg). Wir bilden keinen (unbe-



dingten) Erwartungswert I, sondern einen bedingten E;!
Ein bedingter Erwartungswert ist nicht einfach eine Zahl,

sondern eine Zufallsvariable: [£; hangt von w ab!

2.1.20 Bemerkung: In der obigen Definitionen folgen die
beiden Gleichungen

Si(om) = B9 (132 ) (on)

1+7r

Si(wr) = B2 (12 ) on)

1+7r

fir S1(wy) und Si(wyp) fir den Zeitpunkt 1 aus der Glei-
chung fiir .Sy.

In der Tat: Aus

SOZEQ( Sl ):q US() —I—(l—q) dSO

L+ L+ I+
folgt
’LLQS() udSO
S1(H) =uSy = 1 —
1( ) 420 ql T ( )1—|—7”
_ SQ(WH,WH> ( o )SQ(WH,CUT)
17 T




und analog

duSo dQSO
T)=dS) = 1 —
S1(T) So ql—l—r+( Q)1+r
So(wr, wir) So(wr, wr)
_ 1 —
1 147 +( Q) 147

=E (1i2r> (wr)

Man konnte sie also auch weglassen. In anderen Modellen
benotigt man in der Definition entsprechende Gleichungen

wie

Si(om) = B9 (132 ) (on)

Si(or) = B? (12 ) on)

fiir jede Periode; deshalb haben wir die Gleichungen ange-

geben.

2.1.21 Satz: Wenn d < 1+ r < wu gilt, dann ist der
durch das ZPBBM modellierte Finanzmarkt arbitragefrei
und vollstandig. Das Risikoneutralwahrscheinlichkeitsmaf
ergibt sich, wenn man (wie im EPBBM) die Erfolgswahr-
scheinlichkeit

I+ r—d

LT

wahlt.

Jedes Profil V4 = V5(wy, wy) konnen wir geméf des Risiko-



neutralbewertungsprinzips bewerten:

()

bzw.
E%(V))
pVg_%_ 1+T )
EQ(V:
‘/1— 1(2)
1+7r

wobel wir beachten miissen, dass V| bzw. E(l@ Zufallsvaria-
blen sind (denn die bedingte Erwartung E(l@ ist eine Zu-

fallsvariable).

2.1.22 Bemerkung: In einem ZPBBM gelten die Risiko-

neutralbewertungsformeln

q Valwr,wn) + (1 — q) Va(wn, wr)
‘/i(wH) — 1—|—’I" 3
1_
Vilwy) = q Va(wr, wy) +1(+ : q) Va(wr, wr)

und

_ qVilwn) + (1~ g) Vi(wr)

v
0 1+

oder knapper

v, - Eo)
147
v - Ef()
147

In der Tat wurde die im obigen Beweis mit abgeleitet.



» Wir beschéftigen uns jetzt und spater nochmal mit dem
np-Periodenbinomialbaummodell, deshalb geben wir jetzt
keine Beweise fiir die folgenden Behauptungen an. In die-
sen Abschnitt machen wir einen kurzen Ausflug in die Im-
plementierung (in R). Fiir die Erlduterung der mathema-
tischen Grundlagen verweisen wir auf den néchsten Ab-

schnitt.

2.1.23 Definition (np-Periodenbinomialbaummodell):
Das np-Periodenbinomialbaummodell (BBM) ist durch die
folgenden Angaben beschrieben:

e Es gibt ny Perioden der Lange At und ny + 1 Zeit-
punkte t; = iAt, i =0,...,np. Jetzt ist T = {to, 1, .... ¢ }

e Anleger konnen Geld sicher anlegen bzw. Kredite auf-
nehmen. Die Verzinsung ist in allen Perioden gleich
rAt,r > —1, wobel wir nun die Verzinsung in der

At angeben (stetige Aufzinsung). Wenn ein

Form e”
Anleger zum Zeitpunkt ¢; den Betrag M, in dieser
Anlageform anlegt, dann ist die Auszahlung in %;,

sicher "2 M.

e Die Unsicherheit wird durch die np-fache unabhén-
gige Wiederholung eines Bernoulli-Experimentes mit
() = {wpy,wr} und Erfolgswahrscheinlichkeit 0 < p <
1 erfasst (wy bezeichnet hier den Bernoulli-Erfolg).

Der Ergebnisraum ist also die Menge der Pfade der



Linge ny aus wy's und wy’s:

Q' = {(wl,wg, ...,wnT) ]wi € {wH,wT}}.
("7 hat 2"T Pfade.

Anleger konnen in ein riskantes Wertpapier investie-
ren, das in t =ty = 0 fiir Sy > 0 gehandelt wird. Der
Preis in t > 0 dieser riskanten Anlageform ist eine
Zufallsvariable. Der Preis S;,7 = 1, ..., ny des riskan-
ten Wertpapiers im Zeitpunkt ¢;,7 = 1, ..., np ergibt

sich aus den ersten ¢ Bernoulli-Ergebnissen:
Si((wl, W, ..., wl)) — SouﬁH(wl,wQ,...,wi)dﬂT(wl,WQ,...,wi),

wobei #H (w1, ws, ...,w;) gleich der Anzahl der wpy’s
in der Sequenz (wi,ws, ...,w;) und #7 (w1, wo, ..., w;)
gleich der Anzahl der wy’s in der Sequenz (wy, wa, ..., w;)
bezeichnet. Der Preis des Basiswertes ist also nicht
davon abhingig, wie ein bestimmter Knoten des Baums
erreicht wurde. Lediglich die Zahl der wy’s und wp’s

1st entscheidend. Ferner unterstellen wir 0 < d < w.

Anleger konnen zu den Zeitpunktent =t¢;,¢ =0, ..., np—
1 Portfolio (M;y1,A;;1) € R? wihlen. Die Anleger
beobachten sukzessive die Ergebnisse der Bernoulli-
Experimente. Im Zeitpunkt ¢ = ¢; haben sie also die
ersten ¢ Ergebnisse (w1, ...,w;) beobachtet. Thre An-
lagestrategie in Zeitpunkt ¢; ist also i.A. eine Funk-

tion der Realisierung (wl, cees wi), d.h. (MH—la Ai+1) =



(Misq(wry ey wi), Ajr1(wr, ooy wi)). Eine Sequenz (M1, Ajq), 1 =
0, ...,n7—1 nennen wir Handelsstrategie des NPBBM.

» Beachte: M;.q1,A; 11 werden in ¢; und nicht in ¢, ge-

wahlt. Den Grund fiir die Indexverschiebung haben wir in

der Fuknote in (2.1.2) angedeutet.

2.1.24 Definition: 1.) Eine Handelsstratgie (M;, A;),i =
1,..., N heilst selbstfinanzierend, wenn fiir¢ = 1, ..., np—
1

MZ'GTAt + SZAZ = Mi+1 + S@'Ai—i—l-

M;e™™ + S;A; ist der Wert in t = t. des t;_; angeschafften
Portfolios und M; 1+ S5;A; 1 ist der Wert in ¢ = ¢; des in ¢
angeschafften Portfolios. Die Notation ¢; bedeutet ....Die
Notation ¢ bedeutet ....

2.) Eine selbstfinanzierende Handelsstratgie heifst Arbi-

trage, wenn
i.) My + A1Sy; =0
i) 0% My,.e™™ + A,,.Sp,. > 0.

3.) Das NPBBM heifst vollstindig, wenn es fiir alle X :
€2, — R eine Handelsstrategie mit

M, €™ + Ay S,, =X

gibt.



2.1.25 Bemerkung: i.) Der Preis S, nimmt nach nr
Perioden einen von ny + 1 unterschiedlichen Werte an:

Sou'dT" i =0,1,2,...,np. Es gilt

P(S,, = Sou'd"T™") = (”.T ) p(1—p)" ™,

(4

so dass der Wertpapierpreis im Zeitpunkt ny ist binomial

verteilt.

ii.) Der Preis des Wertpapiers hingt nur von der Anzahl
der wy’s und wy’s ab, jedoch nicht von der Reihenfolge der

wp's bzw. wr’s. Dieser Wertpapierpreis ist pfadunabhén-

gig.

iii.) Die bedingten Auszahlungen X : €2, — R sind unter
Umstianden pfadabhangig.

2.1.26 Definition: Ein Wahrscheinlichkeitsmak Q auf (€2,,,., P(€2,,.))

heift Risikoneutralwahrscheinlichkeitsmalfs, wenn

i.) Q ist das Wahrscheinlichkeitsmaf der np-fachen un-
abhingigen Wiederholung des Bernoulli Experiments mit
den Ergebnissen {wy,wr} und der Erfolgswahrscheinlich-

keit ¢ > 0.

ii.) Es gilt

Sy =qe S, (wg) + (1 —q) e TALS, (wr)



+ Qwir1 = wrlwi.; = (wi,wa, oy w;)) - € S (wy, wo,

+(1—q)e "™ Sii(wi, wa, .., wi, Wr).

Die beiden Gleichungen kann man auch kurz so angeben:

Sz’ = E@ <€_TAtSH_1) ,i = O, N — 1.

]

..... 7 — (w17w27 7w2)) : e—rAt Si+1(w17w27 .

'7wi:wH)

...,OJZ',QJT)

2.1.27 Satz: Fiir das np-Periodenbinomialbaummodell (NPBBM)

mit d < e < wu gilt:

1. Der durch dieses NPBBM modellierte Finanzmarkt

ist arbitragefrei.

2. Der durch dieses NPBBM modellierte Finanzmarkt

ist vollstandig.

TAt_d

3. Mit q = “~—

man das Risikoneutralwahrscheinlichkeitsmalfs.

als Erfolgswahrscheinlichkeit erhalt

4. Fiir jede Auszahlung V,,, = V,,,.(w1,...,wn,) € R
in ¢t = t,, ergibt sich der faire ¢ = 0 Preis V} als

‘/0 — e At nTE@<VnT) )

Die Bewertungsmethode gilt also auch fiir pfadab-

hangige Auszahlungen!

5. Den fairen t = 0 Preis Vj kann man rekursiv bestim-



mern:

—rAt (

Vi(wy, ...,w;) =€ qQVie(wi, .y wi,wp) + (1 — @) Vigr(wr, -ony wiy wr

verwendet. Diese Gleichung kann man auch in der

Form
Vi=e "M EMNVin

angeben.

2.1.28 Bemerkung: Wir bemerken, dass die bedingte Aus-
zahlung pfadabhangig sein kann. Der Wert des Derivates
héngt also nicht nur vom Wert S, der Aktie am Lauf-
zeitende ab, sondern auch davon, wie dieser Wert erreicht

wurde.

2.1.29 Bemerkung (Anpassung): Das Binomialbaum-
modell hat bezogen auf die Wertpapierbewertung (nur!)
drei geeignet zu wihlende Parameter: ¢, © und d. Diese Pa-
rameter konnen so gewahlt werden, dass die Bewertungs-
methode praktisch genutzt werden kann. Dazu wird eine
sogenannte Anpassung bzw. Kalibrierung vorgenommen.
Mafstab sind empirische Kennziffern sowie das Risi-
koneutralbewertungsprinzip. Durch die folgende Para-
meterwahl erhilt man eine Anpassung an die empirisch zu

ermittelnde Varianz der Wertpapierpreisentwicklung (vgl.



insb. Seydel [41], S. 19]):
1

5 _ é(e—rAt+e(r+02)At)’ (2.1>

w = B+ 1, (2.2)

d = 1/u, (2.3)
rAt

q = %Z- (2.4)

Diese Gleichungen erhalt man, wenn man folgendes Glei-

chungssystem l0st:

¢ = qu+(1-q)d, (25)
qu2 + (1 . q)d2 . (erAt)Q _ €2rAt(€<72At . 1), (2.6)
ud = 1. (2.7)

Mit der ersten Gleichung wird die erwartete Rendite des
Binomialbaummodells geméf der Risikoneutralbewertung
kalibriert. Die zweite Gleichung sorgt dafiir, dass die Vari-
anz des Binomialbaummodells an die Varianz der Wertpa-
pierkursentwicklung angepasst wird. Die rechte Seite der
zweiten Gleichung entspricht dabei der Varianz einer log
Normalverteilten Zufallsvariable mit Erwartungswert rAt.
Die dritte Gleichung impliziert, dass der Binomialbaum ei-
ne vertikale Achse hat. W&hlt man eine hinreichend grofe
Anzahl von Schritten, dann werden die Ergebnisse des Bi-
nomialverfahren mit dem der Formel von Black und Scholes

gut {ibereinstimmen (die Formel wird unten hergeleitet).

Es gibt zu der oben angegeben Kalibrierungen Alternati-

ven, die beispielsweise in Jarrow und Chatterjea [27], S. 477]



und Hull [14] diskutiert werden.

2.1.30 Bemerkung: Das folgende R Skript zeigt exem-
plarisch, wie einfach die Implementierung in R des Bino-

mialbaummodells ist.

K =6

SO =6

r =0.04
sigma = 0.3
T=1

N = 1200

dt = T/N

beta = 0.5%( exp( -rxdt ) + exp( (r+sigma~2)*dt ))
u = beta + sqrt( beta”2 - 1)

d =1/u

q= (exp( r*dt )-d)/(Cu-4d)

vector (length=N+1)
vector (length=N+1)

<
I

wn
Il

SO*(u~(0: (N)))*(d~((N):0))

V=K-S
V[V<=0] =0

qc =1 - ¢

for (i in (N:1)) {

V = gxV[2:(i+1)] + qc*V[1:i]
}

dis = exp(-r*T)



V = disx*V

BlackScholesExplicitFormula = function(S0){
dl = ( log(S0/K) +

(r + (sigma~2)/2 )*T )/(sigma*sqrt(T))

d2 = ( log(S0/K) +

(r - (sigma~2)/2 )*T )/(sigma*sqrt(T))

# d2 = d1 - sigmaxsqrt(T)

N1 = pnorm(-dl,mean = 0,sd = 1, lower.tail = TRUE)
N2 = pnorm(-d2,mean = 0,sd = 1, lower.tail = TRUE)

V = Kxexp(-r*T)*N2 - SOxN1
V
}

Wir erhalten die Ergebnisse

>V

[1] 0.5898126

> BlackScholesExplicitFormula(SO0)

[1] 0.5899325

> BlackScholesExplicitFormula(SO) - V
[1] 0.0001199544

Die Ausgabe zeigt auch den Wert der européische Verkaufs-
option geméf Black-Scholes-Merton Modell.

» Die folgenden beiden Sétze mit Beweis findet man ins-
besondere in Giinther und Jiingel |12, Abschnitt 3.1 und
Abschnitt 3.3|



2.1.31 Satz: Im BBM gilt fiir den Preis Cj einer européii-
sche Kaufoption mit Ausiibungskurs K und der Falligkeit

nach nr Perioden:

C10 - qu)(m,p,> o Ke_rAtNCD(ma Q) (28)
p = que_mt (2.9)
nr n -
b(m,p) = <,§)p’“(1 —p)rt (2.10)
k=m

m=min{0 < k < np: uFd"TRS, — K > 0}
(2.11)

Diese Formal heifst diskrete Formel von Black und
Scholes.

2.1.32 Satz (Formel von Black und Scholes): Es sei
T die Restlaufzeit in Jahren einer européische Kaufoption.
Wir withlen das NPBBM mit u = exp(ov/At), d = 1/u und
der Periodenlinge At = % in Jahren. Dann gilt fiir den

Preis Cy7 einer europiische Kaufoption mit Ausiibungs-
kurs K und Restlaufzeit T"

lim C)T = Syd(dy) — Ke " ®(dy), (2.12)

np—0o0
wobel
L In(S/E) 4+ (r + )T
1 J\/T )
C I(S/K)+ (r— )T

do =
’ /T




und ® die Verteilungsfunktion der Standardnormalvertei-
lung ist. Diese Fermal heifst Formel von Black und Scho-

les.

Beweis: Vgl. Giinther und Jiingel [12, Abschnitt 3.3]

2.1.33 Fallstudie: Binomialbaum fiir amerikanische
Optionen Beispiel aus Hull replizieren. Vgl. Hull [15]
Seite 565]

2.1.34 Fallstudie: Delta-Hedging. Vgl Hull |15, Seite
570] Seydel [42], Seite 26|

2.1.35 Fallstudie: Alternative Spezifikationen. Vgl.
Romén [39, Abschnitt 2.7|, Seydel [42], Seite 26], Seydel
[43]

2.2 Das Binomialbaum mit Prozessen

Man kann das N-Perioden Binomialbaummodell ausschliefs-
lich auf Basis des Modellierungsansatzes geméf 2.1 einfiih-
ren. In der Tat ist das der iibliche und u.U. auch zweck-
mékige Weg. Fiir das spétere Studium (insbesondere fiir
die zeitstetigen Modelle) ist es aber zweckmibiger, sich
der Terminologie der stochastischen Prozesse und
der (erzeugten) Filtrationen auf einem allgemeinen Wahr-

scheinlichkeitsraum (€2, .4, P) zu bedienen. Wir kénnen so



relativ abstrakte Konzepte in einem iibersichtlichen und
bekannten finanzwirtschaftlichen Kontext einfithren. Diese
Konzepte werden insbesondere fiir allgemeinere Mehrperi-

odenmodelle und fiir zeit-stetige Modelle bendtigt.

Trotz der erheblichen Redundanz wird das Binomialbaum-
modell jetzt noch mal in einem allgemeineren Kontext ein-

gefiihrt. Wir benotigen einige Konzepte der Stochastik.

2.2.1 Satz: Es sei (2, F,P) ein Wahrscheinlichkeitsraum.
Ferner sei Z2 = {7, ..., Z,}, Z; € F eine Zerlegung von (),
d.h.

Dann gilt

o(2) = L—_I—J Zi|J Cc{1,..,n}
jeJ
o(Z2) ist die kleinste o-Algebra, die die Mengen 71, ..., Z,
der Zerlegung Z enthélt. ¢(Z) besteht aus den moglichen
Vereinigungen aus den Menge 771, ..., Z,. o(Z) heift die

von der Zerlegung Z erzeugte o-Algebra.

» Die Zerlegung repréasentiert eine Fallunterscheidung: Ei-
nes der Ereignisse Z; tritt ein bzw. ist eingetreten. Fiir
einen Wahrscheinlichkeitsraum benotigen wir eine o-

Algebra. Die zur Zerlegung Z passende o-Algebraist o(2Z).



2.2.2 Definition: Es sei (€2, F, P) ein Wahrscheinlichkeits-
raum. Eine Abbildung £ : 2 — R heift F-messbar, falls
¢ YB) € F fiir jede Borelmenge B gilt. In der Tat muss
¢YI) € F nur fiir alle Loravalle (links offene rechts abge-

schlossene) oder Intervalle I gelten (vgl. Jager-Ambrozewicz
24 ...... ).

Wir wollen regelméfig von der Wahrscheinlichkeit sprechen
(konnen), dass die Zufallsvariable & einen Wert in einem
Intervall I annimmt (z.B.: der Verlust ist kleiner gleich 30
Millionen Euro, die Rendite liegt im Intervall von -0.01 bis
0.01). Das geht aber nur dann, wenn F := £71(I) € F gilt,
denn nur fiir Mengen F' € F ist P(F') definiert.

Die Wahrscheinlichkeit, dass & einen Wert in [ annimmt,

1st dann

P(¢ € 1) = P(I) == P(§'(D)).

Das Maf P¢ auf (R, B) heift die Verteilung der Zufalls-

variable &.

Die Voraussetzung der Messbarkeit ist in stochastischen
Zusammenh#ngen also eine ganz natiirliche und unver-

zichtbare Voraussetzung.

Wenn & beziiglich F messbar ist, dann schreiben wir £ € F

oder formulieren, dass & F-messbar ist.

Eine messbare Abbildung & : {2 — R heikt Zufallsva-



riable. Der Name passt, denn der Wert von X hangt vom

zufilligen Ergebnis w ab.

Es sei & : 2 — R eine Zufallsvariable. Die kleinste o-
Algebra, so dass & messbar ist, heifst die von & erzeugte

o-Algebra und wird mit (&) bezeichnet.

Also

i.) £ €o(f) und

ii.) wenn & € A fiir eine o-Algebra A, dann ist o(§) C A.

» Die kleinste o-Algebra enthéilt grobe Mengen. ......

» Wenn wir im Folgenden von einer Zufallsvariable spre-
chen, dann gibt es einen Wahrscheinlichkeitsraum auch wenn

dieser nicht explizit genannt wird.

2.2.3 Satz: Es sei 0(Z) eine o-Algebra auf 2, die durch
eine Zerlegung Z = {7y, ..., Z,} erzeugt wird. Eine Zu-
fallsvariable & ist genau dann o(Z)-messbar, wenn & auf

den Mengen Z; konstant ist.

Beweis: Vgl. Jager-Ambrozewicz 24, ....|

» Waire die Zufallsvariable £ nicht auf Z; konstant, dann
konnte man am Wert von £ mehr ablesen als die Informati-
on, dass ein irgendein w € Z; eingetreten ist (irgendein ist
wichtig, denn wir wissen nicht welches w € Z; eingetreten

ist!).



2.2.4 Satz: Es sei £ : {2 — R eine Abbildung mit endli-
chem Bild(¢) = {x1, ..., z,,}, wobei die x; verschieden sind.
Die Mengen Z; = £ 1({x;}) definieren eine Zerlegung und
es gilt

o(§) =a(Z2)

_ {U Zi|J C {1,...,n}}

keJ

Beweis: Vgl. Jager-Ambrozewicz 24 ....]

2.2.5 Beispiel: Essei £ : 2 — R eine Abbildung ((Bernuolli-
)Variable) mit Bild(¢) = {u, d}, wobei 0.B.d.A. u > d. Die
Mengen Z, = ' ({u}) = {{ =u}, Zo= ¢ '({d}) = {¢ =

d} definieren eine Zerlegung und
o(§) =0(Z2) =10, Z,, Z4, 2} .

Z,, ist Menge der Ergebnisse, bei denen & den Wert u an-
nimmt. Z,; ist Menge der Ergebnisse, bei denen & den Wert

d annimmt.

2.2.6 Definition: Es sei (€, F, P) ein Wahrscheinlichkeits-
raum. Ein Folge von Zufallsvariablen &1, &, , ..., &p heifst

(zeitdiskreter) stochastischer Prozess.

» In der Regel gehen wir davon aus, dass wir die Rea-
lisierungen von &; sukzessive beobachten. Ein stochas-

tischer Prozess erzeugt somit sukzessive Information.



Diesen Vorgang werden wir wir mathematisch mit einer
sogenannten Filtrationen modellieren. Filtrationen sind
im zeitdiskreten zustandsdiskreten Kontext vergleichsweise
einfach. Die jeweiligen Realisierungen erzeugen Zerlegun-
gen, die dann o Algebren definieren. An die Notation muss
man sich erst gewohnen. Wenn man sich gewohnt hat, dann
wird vieles sehr bequem und iibersichtlich. Zudem passt die
Notation auch weitestgehend auf den zeitstetigen und zu-

standsstetigen Kontext.

2.2.7 Definition mit Bemerkungen: Es sei &1, &, ..., &p
ein zeitdiskreter stochastischer Prozess mit Bild(&;) =
{u,d}, wobei wir 0 < d < w unterstellen. Die (Bernoulli-
)Zufallsvariablen & modellieren die Auf/Ab-Bewegungen

des Kurses eines Wertpapiers in den Periodent = 1,2,..., T

Die Mengen

Z1 ey = & ({u}) = {wl&(w) = u} = {& = u}
Z1 s =& '({d}) = {wl&(w) = d} = {& = d}

definieren eine Zerlegung (Partition) Z; des Wahrschein-
lichkeitsraum 2 = Z (, ) W 2} (45). Dabel steht der * fir
beliebige Fortsetzung des stochastischen Prozesses. Zy ()
ist die Menge der Zustinde w, fiir die der &-Wert u ist;
also §(w) = u. Analog ist Z; (4, die Menge der Zustinde
w, fir die der &-Wert d ist.

Zu dieser Zerlegung betrachten wir die erzeugte o-Algebra



F1 = o(21). Die o-Algebra F; erfasst den Sachverhalt,

dass man den ersten Kursschritt beobachtet hat.

Die Menge Z; () konnen wir weiter zerlegen:

Zl,(u,*) - {51 = U, 52 — u} S {51 = u, 52 - d}
— ZQ,(u,u,*) ) Z2,(u,d,*)

Analog fir Z (44

Zidw =161 =d, & =ut W{& =d, 5 = d}
= Za,(dux) B 22 (d,d%)

Die Mengen Zy (u,u,): 22 () Z2,(dux) WA Zo (44 defi-
nieren die Zerlegung Zs von (2. Zj (, 4+ 18t beispielsweise
die Menge der Zustinde w, in denen zunachst der Schritt

¢1(w) = v und dann der Schritt & (w) = d stattfanden.

Die Zerlegung Z, definiert die o-Algebra JF,. Dabei gilt
Fi1 C Fo, d.h. F; ist eine sogenannte Verfeinerung von
Fi.

So gehen wir Schritt fiir Schritt voran und erhalten eine
Folge von Zerlegungen Z; und o-Algebren F; mit F;_1 C
Fi. Die Zerlegung Z; ergibt sich dabei aus Z;_1: Die Men-
gen Zi_q (y, der Zerlegung Z; | werden bindr zer-

legt, d.h.

7"‘7xt_17*)

Zt—l,(xl,...,xt_l,*) = Zt,(ml,...,xt_l,u,*) © Zt,(xl,...,xt_l,d,*) .



Quellen: Pliska [37, Seite .....| Compolieti und Marakov [4]
Seite ......] Elliot und Kopp [?, ......]

2.2.8 Satz: Die gerade in (2.2.7) eingefiihrte o-Algebra

F; ist die von den Zufallsvariablen &, ..., & erzeugte o-
Algebra, d.h. die kleinste o-Algebra, so dass alle Zufallsva-

riablen &, ..., & messbar sind:

E — 0-(517 ) gt)

Die o-Algebra F; reprasentiert die Information, die ein
Anleger hat, der die Kursentwicklung bis ¢ beobachtet
hat.

2.2.9 Baustellen: Warum gilt F; = o(&;) nicht? ..... Wé-

re F; = 0(&), dann wire der Anleger vergesslich!

Wir betrachten den Fall T = 2.

Bs ist o(6) = {0, {(H, H), (T, H)}, {(H, T), (T.T)}, {H, T}?}.

Esist o(&1,&) =4{0,{(H,H)},{(H,T)},{(T,H)},{(T,T)}, alle Vereinig
= P({H,T}?). Wire (&) die Information des Anleger,

dann der Anleger vergesslich: Er hétte die erste Kursbewe-

gung vergessen.

» Warum gilt 0(&1, &) = o(&)No (&) nicht? Wir betrach-
ten wieder T = 2. Es ist 0(£1,&) = P({H, T}?)}.

Esist o(&1) = {0, {(#,T), (H, H)}, {(T, 1), (T, H)},{H,T}*}.
Esist o(6) = (0. {(H, H), (T, H)}, {(H.T), (T, T)}, {H,T}).
Also o(&)Na(&) ={0,{H,T}*}.

H
H



» Wie kann man o(g, f) (auch) charakterisieren? Gemif
Henze [18, Seite 331, 2. Auflage]

o(f,g9)=c(f'(B)Ug (9))

Warum? Alle Mengen in f~1(B) bzw. in g~ !(B) miissen in
o(f,g) liegen. Also gilt fir M = f~(B) U g *(B), dass
M C o(f,g). Dann gilt auch (M) C o(f,g). Aber es
gilt auch f, g € o(M). Dann muss o(f, g) C o(M).

2.2.10 Definition: Es sei (€2, F,P) ein Wahrscheinlich-
keitsraum. Eine Folge von o-Algebren Fi, Fo, ..., Fpr mit
Fi C Fiiq heift Filtration auf (Q, F,P). Ein stochasti-
scher Prozess (X;) heikt F-adaptiert, falls X; € F; fiir
t=1,...,N gilt

2.2.11 Bemerkung: In vorhergehenden Abschnitt 2.1 war
Q= {H,T = {(w,...,wy)|lw; € {H,T}} die Ergeb-
nismenge und die Kursschritte ergaben sich entsprechend:
& = u falls w; = H bzw. & = d falls w; = T'. Der Wahr-
scheinlichkeitsraum ist minimal: Genau zu geschnitten auf

das Risiko der Kursentwicklung.

In diesem Anschnitt ist 2 irgendeine Ergebnismenge. So ein
beliebiges (2 kann Risiko umfassender abbilden. Die Kurs-
schritte des riskanten Wertpapiers sind die Realisierungen
eines stochastischen Prozesses auf (2. Die Kursschritte er-
zeugen Schatten /Information /Teilstrukturen auf (€2, A, P).

Da wir in diesen Abschnitt zum Binomialbaummodell nur



die erzeugte o-Algebra verwenden, erhalten wir — wie wir
gleich sehen werden — keine anderen Ergebnisse als in 2.1.

Der Rahmen ist aber flexibler.

Die o-Algebra F; reprasentiert die Information iiber die
Kursentwicklung bis £. In dem von uns betrachten Mo-
dell kann man die Kursentwicklung selbst (die Kurspfa-
de) selbst als Représentation der Information verwenden
(so wie im vorhergehenden Abschnitt). Das ist in der Tat
fiir das Binomialbaummodell auch iiblich. In allgemeineren
Modellen ist das aber ungeeignet/uniiblich. Als Vorberei-
tung auf die allgemeineren Modelle lohnt sich deshalb der

Umweg tiber Filtrationen.

Zu jeder Menge Z der Zerlegung Z; gehort ein eindeutig

bestimmter Pfadanfang (x1, ..., zs, *). .....

Das Wahrscheinlichkeitsmafs ist unabhingig vom stochas-
tischen Prozess generisch gegeben. Aus P ergibt sich die

Verteilung der Zufallsvariablen PSi

2.2.12 Satz: Wenn X; : Q — R messbar beziiglich o (&1, ..., &)
ist, dann gibt es eine Abbildung X, : {u, d}’ — R mit

Xi(w) = Xi(&(w), ..., &(w))

= Xt(.Tl, ceny th),

wobei &;(w) = x; gelten soll. » Konvention Pfadraum /Zustandsraum:
Auf Basis der Beobachtung 2.2.12| werden wir im Folgenden



X < O'(Sl7 ...7&)

y Xt €0(&1, &) = 31X, Xi(w) = Xi(&1(w), .., &(w))

Abbildung 2.2.1: Schema zum Satz [2.2.12

z.B. Handelsstrategien in ¢ - die o(&, ..., & 1) messbar sind
— als Funktion des Kursverlauf (x1, ..., z;_1) bis t — 1 ange-
ben, obwohl es gemal Definition messbare Abbildungen auf
() sind; also Funktionen von w und nicht von (1, ..., z;_1).
Wir schreiben Xy(z1,...,24-1) = X¢(x1,...,2¢_1) anstatt

X¢(w), d.h. wir verzichten auf die Tilde "

2.2.13 Bemerkung: Die Abbildung =; : Q — R’

(&1(w))

Ea(w)

&)

ist eine Abbildung von den Zustdnden €2 in die Menge der
Pfade R’ (in Spalten erfasst). Das Bild von = : Q — R
ist die Menge der Pfade der Inkremente.



Es gilt
O-<£17 SR ft) — J(Et>'

2.2.14 Bemerkung: Im Satz haben wir die Infor-
mation bis ¢ intuitiv durch (&1, ..., &) reprisentiert. Da
o(&, ..., &) = (=) gilt, konnen wir dafiir auch o(=}) ver-
wenden; vgl. dazu das sogenannte Faktorisierungslemma

(Henze [18] Seite 175]).

t

Q - R’ O {u,d}!

3 Xi € 0(5y) = X, Xy(w) = Xy S(w))

Abbildung 2.2.2: Faktorisierungslemma: Henze [18, Seite
175]

» Baustelle Jetzt wird die Eigenschaft predictable rele-
vant; vgl. Lamberton und Lapayre [30, Seite 183]. Naja,
noch nicht. Wenn der Integrator Spiirnge hat und die Zeit
stetig ist. Dann ......

2.2.15 Definition: Es sei Fy, Fy, ..., Fr eine Filtration.
Ein stochastischer Prozess h; heifst previsibel, falls h; €
./—';g_l,t == 1, RPN T ist.



2.2.16 Bemerkung: Die beobachteten Wertpapierpreis-
anderungen sind die Realisierung von stochastischen Pro-
zessen &. Die Kursanderungen erzeugen Information und
die erzeugte Information erfassen wir durch die erzeutge

Filtration.

2.2.17 Definition: Das Zweiperiodenbinomialbaum-
modell (ZPBBM) ist durch die folgenden Angaben be-

schrieben:
e Lis gibt zwei Perioden und drei Zeitpunkt ¢ = 0,1, 2.

e Anleger konnen fiir den Zinssatz r > —1 Geld sicher
anlegen bzw. Kredite aufnehmen. Dieser Zinssatz ist

in beiden Perioden gleich 7.

e Gegeben ist ein Wahrscheinlichkeitsraum (€2, A4, P).
Anleger konnen in ein riskantes Wertpapier investie-
ren. In t = 0 wird das Wertpapier fiir Sop > 0 gehan-
delt. Fiir den Preis des Wertpapiers gilt

Sl - S()fla
Sz = 50 &1 &o.

Dabei sind &1, & unabhingige Bernoulli Zufallsvaria-
blen auf (£2,.4,P) mit Bild(§;) = {u,d} und P(¢; =
u) = p > 0. Ferner nehmen wir an, dass 0 < d < u

gilt.



Fiir die Wahrscheinlichkeitsverteilung von S; gilt

P(S1 = Sou) = P(§1 = u) = p,
P(S1 = Sod) =P(&1=d) =1 —p.

Fiir die Wahrscheinlichkeitsverteilung von Sy gilt

P(Sy = Sou?) =P(& = u, & = u) = p°,
P(S; = Soud) =P(&§ =u, & =dV & =d, & =u) = 2p(1 —p),
P(Sy = Sod*) = P(¢é; = d, & = d) = (1 — p)*.

Wir konnen die Wahrscheinlichkeiten fiir die Pfade

auch konkret so angeben:
P(é = 21,6 = x0) = p#U((ﬂflm))(l _ p>#d((1’17$2))7

wobei fu(xy, xo, ..., x,) gleich der Anzahl der u’s in
der Sequenz (1, Ta, ..., ,) und fd(z1, T, ..., x,) gleich
der Anzahl der d’s in der Sequenz (z1, xs, ..., T,) be-

zeichnet.

Anleger konnen ihr Portfolio nicht nur in ¢ = 0 wéh-
len, sondern in ¢ = 1 anpassen; je nach Informati-
on iiber die Kursentwicklung. Der Informationsstand

wird durch Sub-o-Algebren erfasst:

Fo
Fi

{0,Q}
o(&1)

Mit M;,7 = 1,2 bezeichnen wir die Geldmarktpositi-



on in GE und mit A;,7 = 1,2 die Anzahl der Stiicke
des Wertpapiers zu Beginn der Periode ¢; also zu den
Zeitpunkten t1,ty. Die Zufallsvariablen M; und A;
sind J;_j-messbar. Der Zufallsvektor (M;, AT, i =
1,2 bezeichnet das Portfolio in £ = 4. Die stochas-
tischen Prozesse My, My und Ay, Ay bezeichnen wir

als Anlagestrategie.

Da Fy = {0,Q} ist, miissen M; und A; reelle Kon-
stanten sein. Da F; = (&) sind M5 und Ay Funk-
tionen der Realisierung der Zufallsvariable &;; vgl die
Konvention 2.2.12 In der Tat: Wenn M, und Ay F
messbar sind, dann sie My und A, konstant auf den
Mengen {£ = u} bzw. {£ = d}. Die drei Objekte (6
reelle Zahlen)

(M, Ar)", (Ma(u), Ao(u))", (Ma(d), Ao(d))"
erfassen die gesamte Anlagestrategie.

Die letzte Absatz zeigt, dass wir inhaltlich das gleiche
Modell wie im vorhergehenden Abschnitt erhalten.

Der Wert
Vo= My + A1Sy

erfasst die Anfangskosten bzw. Anschaffungs-

kosten der Strategie — die in ¢ = 0 anfallen. Die



Zufallsvariable
Vo = (1+7‘)M2+A2S2

erfasst die Auszahlungen der Strategie, die sich

in t = 2 ergeben.
Beachte V5 € F.

e Das folgende Diagramm zeigt das Zwei-Perioden-Modell

schematisch.
Sou J
“/'Q # udSo
S0

2.2.18 Definiton: Eine Anlagestrategie des ZPBBM heifst

selbstfinanzierend, falls
M1'<1+7”)—|—A1'Sl = My + Ay - 5}
gilt.
2.2.19 Definiton: Das ZPBBM heifkt arbitragefrei, wenn

es keine selbstfinanzierende Anlagestrategie mit Anschaf-

fungskosten Vy = 0 gibt, so dass die Auszahlung 0 # V5 > 0



nicht-negativ aber von Null verschieden ist.

2.2.20 Definiton: Ein Wahrscheinlichkeitsmak Q auf (€2, .A)
heifst Risikoneutralwahrscheinlichkeitsmaf des ZPBBM,

wenn
i.) Es gibt ein 0 < ¢ < 1 mit

QU{& = a1, & = 29}) = q#u((ﬂfl,xz))ﬂ _ q)#d((ﬂflm)).

ii.) Es gilt
Sl S()u S()d
So = E° = 1 —
0 (1+fr> q1+fr+( q>1+r’
S,
— EQ 2
s (25).
bzw. ausgeschrieben
Sou? Soud
Sou= Q& = ulér = u) T — + Q& = di6s =)~
Sou? Soud
_ 1—
Iy T
Soud Sod”
od = Q& = ul&1 = d); e +Q(& = d|&y = d); +T
S()ud S()d2
— 1—
ql +r * Q)l +r

2.2.21 Baustelle: In der obigen Definition wird das Risi-

koneutralwahrscheinlichkeitmafs iber die Werte von &7, &

charakterisiert: Q({&2 = 21,&§% = 22}) = Q(Zo(4)00) =
g 1e2)) (1 — q)#((*1.72)) Wiy miissen uns {iberlegen, dass/wie

das konsistent auf ganz (€2, A) geht. Dazu geben wir die



passende Zéhldichte an. Es sel w € Z (4, 4,). Dann
Q{w}) = q#U((x1,x2))(1 _ q)#d((xl,@))

Die Mengen Z (3, 4,), T1, T2 € {u,d} definieren eine Zerle-
gung von §). Je nach dem in welchem Z ,, ..,y liegt, ist Q

gemalfs obiger Formel definiert.

2.2.22 Satz: Wenn d < 1+7r < u gilt, dann ist der durch
das ZPBBM modellierte Finanzmarkt arbitragefrei. Jede
F5 messbare Auszahlung kann repliziert werden. Das Risi-
koneutralwahrscheinlichkeitsmaf ergibt sich, wenn man die
Erfolgswahrscheinlichkeit

1+ r—d
1= u—d

wahlt. Es gelten die Risikoneutralbewertungsformeln

2.2.23 Bemerkung: Das Gesamtmodell ist AF, wenn alle
TM AF sind ......

2.2.24 Definition: Das n Perioden Binomialbaum-
modell (nPBBM) ist durch die folgenden Angaben be-

schrieben:

Lohnt sich der Aufwand
oder reicht 2 Perioden?



e Eis gibt n Perioden der Lange At und n+1 Zeitpunkte
ti=1-At,1=0,...,n.

e Anleger konnen Geld sicher anlegen bzw. Kredite auf-
nehmen. Die Verzinsung ist in allen Perioden gleich
rAt,r > —1, wobei wir nun die Verzinsung in der

A

Form e">! angeben. Wenn ein Anleger zum Zeitpunkt

t; den Betrag M; in dieser Anlageform anlegt, dann

ist die Auszahlung in ¢;., sicher e"*M;.

e Anleger konnen in ein riskantes Wertpapier investie-
ren. In t = 0 wird das Wertpapier fiir Sop > 0 gehan-
delt. Fiir den Preis des Wertpapier gilt

Sl - 50517
S = S0 &1 &,

Si =568 ... &

& sind unabhéingige Bernoulli Zufallsvariablen mit
Bild(&) = {u,d} und P(§; = uw) = p > 0. Ferner

nehmen wir an, dass 0 < d < u gilt.

Es ist

P({(é‘la ey gn) = (371, ceey CIZ’n>}) = p#u(ajl """ $n)(1_p)#d(aﬁ1,,mn)

wobei fu(x1, o, ..., x,) gleich der Anzahl der u’s in
der Sequenz (1, 9, ..., ) und fd(x1, T, ..., x,) gleich

der Anzahl der d’s in der Sequenz (z1, xo, ..., T,) be-



zelchnet.

e Anleger konnen ihr Portfolio nicht nur in £ = 0 wih-
len, sondern zudem in ¢t = ¢; anpassen; je nach Infor-
mation iiber die Kursentwicklung. Der Informations-

stand wird durch Sub-o-Algebren erfasst:

f‘b = J(So) = {@, Q}
E — 0-(517527"'757;)'

F; ist also die kleinste o-Algebra, so dass die Zufalls-

variablen &1, &, ..., & messbar sind.

Anleger konnen zu den Zeitpunktent =+¢;,¢ =0, ..., n—

1 Portfolio (M;,1, ;1) € R? wihlen. Die Zufallsva-
riablen M; 1, A, 1 sind F; messbarﬂ Die Anleger be-
obachten (und vergessen nicht) sukzessive die Ergeb-
nisse der Bernoulli-Experimente. Mathematisch er-
fassen wir den Informationsstand iiber die F;-Messbarkeit,
die im diskreten Zusammenhang eine einfache Ausle-
gung hat: Im Zeitpunkt ¢ = ¢; haben sie also die ers-

ten ¢ Ergebnisse (&1, ..., &) beobachtet. Thre Anlage-
strategie M, 1, A, ist also eine Funktion der Reali-
sierung (&1, ..., &), d.h. (M1, Ajvy) = (Mi1(&1y -, &), D1 (&, -, &)
Einen stochastischen Prozess (M;, A;),i = 1,...., N

nennen wir Handelsstrategie des nPBBM.

4Stochastische Prozesse ¢;, die F;_; messbar sind heifen predictable. Prozesse,
die F; messbar sind heifsen adaptiert. In einigen Quellen wird dieser Unter-
schied vernachlissigt. In diskreten Modell ist der Unterschied in der Tat nicht
wesentlich; in Zeitsteigen Modelle jedoch nicht. Dieser Text soll auf zeitsteige
Modelle vorbereiten und deshalb wird der Unterschied gemacht.



2.2.25 Bemerkung: Die Dynamik der Wertpapierkurse

kann man auch wie folgt angeben:
Sz' = S@'—l : gl,’l, = 1, e n

Vorausschauend — namlich mit Blick auf das Black-Scholes-
Merton Modell —ist insbesondere die folgende Spezifikation

niitzlich. Zunéachst
nS;=InS;; +In§ =S + ¢

mit ¢; = In&;. Jetzt wihlen wir £'°® und o, sodass AS; =
In S@ — In Si—l = CZ = Mlogs - At + oV At - Zis wobel Zi
iid Bernoulli Zufallsvariablen mit Bild(z;) = {—1,1} und

P(z;) = 1 sind. Wir erhalten also

InS; =181 + - At + oV AL - 2

2.2.26 Definition: 1.) Eine Handelsstratgie (M;, A;), i =

1
1, ...,n heillt selbstfinanzierend, wenn firz =1,...,n—1
MierAt + SiA; = M, 1+ S;A.

2.) Eine selbstfinanzierende Handelsstratgie heifst Arbi-
trage, wenn

i.) My + A1Sy = 0 und

ii.) 0% M,e™ + A,S, > 0.

3.) Das NPBBM heifit vollstindig, wenn es fiir alle X €



F,, eine Handelsstrategie mit
M, + A, S, =X

gibt.

2.2.27 Bemerkung: i.) Der Preis S,, nimmt nach n Peri-
oden n+1 unterschiedliche Werte an: Squ‘d"*,7 = 0,1,2, ..., n.
Es gilt

P(Sn _ Souzdn—@) _ ( >p2<1 _p)n—z7

(4

so dass der logarithmierte Wertpapierpreis im Zeitpunkt n

binomial verteilt ist.

ii.) Der Preis des Wertpapiers héngt nur von der Anzahl
der u’s und d’s ab, jedoch nicht von der Reihenfolge der
u’s bzw. d’s. Der Wertpapierpreis ist pfadunabhangig.

iii.) Die bedingten Auszahlungen X sind im allgemeinen

pfadabhingig.

2.2.28 Definition: Ein Wahrscheinlichkeitsmaf Q auf (€2, .A)

heift Risikoneutralwahrscheinlichkeitsmalfs, wenn

i.) Es gibt ein 0 < ¢ < 1 mit

QU(&1y o &) = (1, ooy ) }) = gFHETn) (1) #lT1n)



ii.) Es gilt

So=q e_rAtSl(u) +(1—gq) e_TAtSl(d),

Si(x1, .y xi) = Q&1 = ul€r i = (x1, .y i) e Sipa(21, o0y 24, 1)

—rAt
=4ge Siv1(T1, 2, ..., Tjy 1)

+ (1 o Q) e—TAt Si+1(a:17 L2y «es Ly d)
Die beiden Gleichungen kann man auch kurz so angeben:

S;=E? (e " S44]F) ,i=0,..,n— 1.

2.2.29 Satz: Fiir das n-Perioden Binomialbaummodell (nPBBM)
mit d < e < u gilt:

1. Der durch dieses nPBBM modellierte Finanzmarkt

ist arbitragefrei.

2. Der durch dieses nPBBM modellierte Finanzmarkt

ist vollstandig.

3. Mit ¢ = erf_ﬁ;d als Erfolgswahrscheinlichkeit erhalt

man das Risikoneutralwahrscheinlichkeitsmafs. (We-
gen der Vollstandigkeit ist das Risikoneutralwahrschein-

lichkeitsmak eindeutig.)

4. Fiir jede bedingte Auszahlung V,, = V,,(x1, ..., z,) €
R?" fiir den Zeitpunkt ¢t = t, ergibt sich der faire



t =0 Preis V| als
‘/b — e—%At-nE@(Vn). (213)

Die Bewertungsmethode gilt also auch fiir pfadab-

hangige Auszahlungen!

5. Den fairen t = 0 Preis Vj kann man rekursiv be-

stimmen: Firi:=n—1,...,1
Vi, oy i) = € " (qViga (@, ooy zi,w) + (1 — @) Vi (21, oy 24, d)
und schlieklich
Vo= e (qVi(u) + (1 - g)Vi(d))
Diese Rekursion kann man auch in der Form
Vi = e "M EYVin| F)

angeben.

2.3 Exkurs: Ito-Doblin Lemma diskret

» Stochastische Analysis (Analysis mit der Brown’schen
Bewegung (BB)) ist kompliziert. Wir wollen also zwar das
[to-Integral umgehen. Die partielle Differentialgleichung von
Black-Scholes-Merton wollen wir aber trotzdem herleiten.

Wir benoétigen dafiir das folgenden Ito-Doblin fiir Arme.



2.3.1 Definition: Es sei [ ein Intervall mit 0 € [ und
g : I — R eine Abbildung vom . Wir sagen g = o(h), wenn

. glh)
pm = =Y

2.3.2 Definition: Es sei z;, eine symmetrische Bernoul-
li Zufallsvariablen mit Bild(z;) = {—1,1} und P(z, = 1) =

P(z, = —1) = 5. Wir schreiben dann zj, ~ SymBern.

2.3.3 Satz (Ito-Doblin-Lemma): Es sei f = f(t,.5) ei-
ne Funktion von ¢ und S. f sei zweimal stetig differenzier-
bar beziiglich S und einmal stetig differenzierbar beziiglich

L.

Der Kurs S; erfiille die Differenzengleichung
AS=p-S-At+o-8-VAt-z z~iiSymBern
Wir suchen a und b, so dass:
Af=a-At+b-VAL-z+ o(Ab).
Es gilt

Af(s7t) - (,u-S-fé(S,t)—kf{(S,t)—|—%f§5(5,t)-02-52)-At

+0-8-fo(St)-VAL-z
+ o(At)



Beweis: Es gilt

AS-At=(u-S-At+o-S-VAt-z)- At
= (- S- (A +0-S- (A2 2) = o(At)

2
(u-At+J-S-vAt-z> :u2-(At)2+2uaS-(At)1%-z

+ 028 At - 2P
—1

= 0257 - At + o(At)

(AS)’

Fiir eine Approximation von A f(S, ¢) mit einem Fehler von

der Ordnung o(At) bendtigen wir also nur die Terme der
Ordnung At, AS und (AS)?. Also gilt

1
AJ(S,8) = JI(S. )M+ J5(S, )AS + - fUs(S, DAS) + (M)
Wenn wir noch AS und At einsetzen.

AF(S ) = fo(S,)[u-S-At+0-5 VAL 2]
+ A8 AL+ 2[5, 6)5%0% - At +o(A1

und die Behauptung ist bewiesen.

2.3.4 Lemma: Es sei AX = v/At- 2. Dann (AX)? = At.

Fiir die Brown’sche Bewegung gibt es eine entsprechende
Formel: (dW)? = dt. So einfach wie in unserem Fall ist
die Bedetung dieser Formel jedoch nicht (siehe Shreve Re-

mark (3.4.4))! So schon einfach ist es hier, weil wir uns mit



Bernoulli-Schocks z ~ symBern begniigen.

2.4 MPFMM

Baustelle ....



3 Entscheidungstheoretische Basis

3.1 Praferenzen

Dieser Abschnitt orientiert sich an Féllmer und Schied |10,
Kapitel 2|. In den beiden vorhergehenden Abschnitten ha-
ben wir Wertpapierbewertungsmethoden besprochen, die
nicht — jedenfalls nicht explizit — auf die Wiinsche und Sor-
gen der Anleger eingehen. Das ist iiberraschend: Wie kann
es sein, dass die je nach Anleger variierende Aversion ge-
gen Risiken fiir die Wertpapierbewertung irrelevant ist. In
der Tat sind die Praferenzen der Anleger nicht irrelevant.
In den vorhergehenden Kapiteln war die Preisentwicklung
der Basiswertpapiere exogen vorgegeben. Die Bewertungs-
methoden waren relative Bewertungsmethoden: Die
Preise der Basiswerte werden als gegeben akzeptiert und
daraus ergeben sich die Preise anderer Wertpapiere. Die
Préferenzen werden erstens explizit bendtigt, wenn man
die Preise der Basiswertpapiere erklaren will. Zweitens er-
weist sich die Analyse der Préferenzen in unvollstiandigen
Finanzmérkte als niitzlich. Das Intervall der fairen Preise

eines Auszahlungsprofils ist in konkreten Anwendungen re-



gelméafig sehr grok. Wenn man zusétzlich zur Annahme der
Arbitragefreiheit die Préferenzen des Anlegers modelliert,
dann kann man fiir eine bedingte Auszahlung auf metho-
disch einwandfreiem Weg einen Preis — und nicht ein gan-
zes Intervall von Preisen — ermitteln. Drittens erhalten wir
eine Herleitung des stochastischen Diskontfaktors auf der

Grundlage der Entscheidungstheorie.

3.1.1 Definition: i.) Es sei X # () eine Menge. Eine (bi-
nire) Relation R auf & ist eine Teilmenge von X' x X.
Fiir ein Paar mit (z1,22) € R schreiben wir x;Rxy und
sagen, dass die Relation fiir 1 und x5 erfiillt ist (bzw. be-
steht).
ii.) Eine binédre Relation > heiftt

iil.) transitiv, falls: 1 > x5 und xo > x3 impliziert
T = T3,

ii2.) vollstindig, falls: fiir alle x1, z0 € X gilt 21 = x5
oder x9 >~ x7.
iii.) Eine bindre Relation = heift Praferenzrelation, falls
>~ vollstandig und transitiv ist. Wenn x7 = xo gilt, dann
sagen wir x; ist mindestens so gut wie xs.
iv.) Fiir eine Préferenzrelation > definieren wir die Relati-

on > durch
T -ysy Lt
>~ heillt strenge Priferenzrelation und durch

r~y<srr-yundy > o



die Relation ~. Man kann sich leicht vergewissern, dass ~
eine Aquivalenzrelation ist. ~ heift Indifferenzrelation.

v.) Wenn es eine Funktion U : & — R mit
v =y & Ulr) 2 Uly),

gibt, dann heikt U eine numerische Darstellung der
Praferenzen. In diesem Fall nennt man U auch Nutzen-

funktion.

3.1.2 Satz: Es gibt genau dann eine numerische Darstel-
lung der Préaferenzen >, wenn es eine abzihlbare ord-

nungsdichte Teilmenge Z von X gibt.

Eine Teilmenge Z C X heilst ordnungsdicht, falls es fiir
alle v1,200 € X mit x9 > z1ein z € Z mit x9 > 2 > 11

gibt.

Wenn X abzahlbar ist, dann gibt es fiir jede Préferenzre-

lation eine numerische Darstellung.

» [n der Mikrotkonomie (bei einer mathematischen Aus-
richtung) untersucht man die gerade eingefiihrten Konzep-
te griindlich und erhalt viele schone Resultate. Da wir diese
Resultate hier und im Folgenden nicht benétigen verweisen

wir auf Kreps [23].

3.1.3 Definition: i.) Es sei (€2, F) ein messbarer Raum.
Ein Wahrscheinlichkeitsmafs I auf (€2, F) bezeichnen wir



(auch) als Lotterie.

Ein Dirac Wahrscheinlichkeitsmal J,, bezeichnen wir als

konstante Lotterie.

ii.) Es sei (2, F) ein messbarer Raum und M eine kon-
vexe Teilmenge aller Wahrscheinlichkeitsmafe auf (€2, F).
Es sei > eine Praferenzordnung auf M mit numerischer
Darstellung U : M — R. Wenn es eine messbhare Funktion
w2 — R mit

U(L) = / w(w) dL(w) = E-(u)

gibt, dann heiflt diese Darstellung eine von-Neumann-

Morgenstern Darstellung der Praferenzen .

Der numerische Wert ergibt sich also als der Erwartungs-
wert des Nutzens unter dem Mak L. In diesem Fall nennen
wir U(L) Erwartungsnutzen und v Nutzenfunktion.
Wenn Entscheidungen auf Basis des Erwartungsnutzen mo-
delliert werden, dann sagt man, dass die Entscheidungen

auf Basis des Bernoulliprinzips getroffen werden.

3.2 Finanzlotterien

3.2.1 Bemerkung: Wir werden Priferenzen auf Wahr-
scheinlichkeitsmafsen betrachten. Wie im Kapitel 1 betrach-
ten wir das Experimente mit den Ergebnissen {50, 70, 75,80, 100} C

R = ). Wir hatten uns insbesondere mit den Wahrschein-



lichkeitsma L1 ({50}) = 3 und L;({100}) = % beschiftigt
und argumentiert, dass der Erwartungswert als Grundlage
fiir Entscheidungen ungeeignet ist. Beim Bernoulli Prinzip
sind nicht die Erwartungen iiber die Ergebnisse re-
levant; also z.B. E (idg(w)). Vielmehr orientiert sich die
Entscheidung an den Erwartungen beziiglich des Nut-
zens aus den Ergebnissen, d.h. E* (u(w)). Eine popu-
lire Wahl fiir u ist — aus Griinden, die wir spéter erken-
nen werden — der Logarithmus, d.h. u(w) = In(w). Fiir

die Modellierung von Préferenzen wiirden wir uns dann an

EL(u(w)) fiir I aus M orientieren.

Wir hatten auler L noch ein zweites Wahrscheinlichkeits-
mak betrachtet: Ly({70}) = 1 und L;({80}) = 3. Jetzt
gilt EM(X) = 75 = EM2(X) aber EM (u(X)) = 4.258597 <
4.315261 = EM2(u(X)). So ist also in der Tat die zweite
Lotterie besser als die erste; bei gleichem Erwartungswert.
Wir werden “im Folgenden sehen, dass man auf diese Wei-
se — mit dem Bernoulli-Prinzip (Nutzenfunktion, Erwar-
tungsnutzen) — eine potente Methode zur Erfassung von

Risikoaversion erhalt.

» Im folgenden betrachten wir nicht irgendwelche Ergeb-

nismenge X, sondern Lotterien fiir monetare Ergebnisse in

R.

3.2.2 Definition: Es sei S C R ein Intervall.

i.) Eine Lotterie — also ein Wahrscheinlichkeitsmafs — auf



(S, Bs) heift Finanzlotterie oder monetire Lotterie.

ii.) Gilt fiir eine Finanzlotterie L zudem

E(L) = E(idg) = / sdL(s) = / sdF(s) € R,

dann heifst I eine integrierbare Finanzlotterie. Wir

nennen £(IL) den Erwartungswert der Lotterie L.

Hier muss man beachten, dass der Erwartungswert eines
Wahrscheinlichkeitsmafes I definiert wird. Standardma-
kig definiert man den Erwartungswert einer Zufallsvariable.
Auch in der obigen Gleichung kommt eine Zufallsvariable
vor, viz. idg(+). Die ,unabhéngige Variable* in der obigen

Definition ist jedoch L.

3.2.3 Definition: Es sei (5, Bg) ein Intervall und M eine
konvexe Menge von integrierbaren Finanzlotterien, die die

Menge der konstanten Finanzlotterien enthalt.

i.) Eine Priferenzrelation > heift monoton, falls fiir alle

x >y auch 9, > 0, gilt.

ii.) Eine Préferenzrelation >~ heift risikoavers, wenn fiir

alle nicht-konstanten Finanzlotterien . € M\{6, : x € S}
55’@) — 1L

gilt.

3.2.4 Bemerkung: Wenn L = §,, dann z = E(LL).



3.2.5 Satz: Fiir die Préferenzrelation > gelte die von-

Neumann-Morgenstern Darstellung

U(L) = / u(s) dL(s) = E-(u).

Dann gilt:

i.) = ist genau dann monoton, wenn wu strikt monoton
wachsend ist.
ii.) >~ ist genau dann risikoavers, wenn u ist strikt konkav

1st.

Beweis: Follmer und Schied [10].

3.2.6 Definition: Es sei (5, Bg) ein Intervall und M eine
konvexe Menge von integrierbaren Finanzlotterien, die die
Menge der konstanten Finanzlotterien enthélt. Ferner sei
>~ eine Praferenzrelation mit von-Neumann-Morgenstern

Darstellung

U(L) = / u(s) dL(s)

mit einer strikt monoton wachsenden und stetigen Funk-

tionen u : S — R.

i.) Die eindeutig bestimmte Losung ¢(LL) der Gleichung
u(c(LL)) = E*(u)

heifst das Sicherheitsaquivalent der Finanzlotterie L. Es



gilt
o(lL) = u (E"(u))
ii.) Die Differenz o(L) = £(L) — ¢(L) heift Risikopriamie

von L.

3.2.7 Bemerkung: Es sei > eine Priferenzordnung auf
(.S, Bg) mit von-Neumann-Morgenstern Darstellung U(IL) =
EL(u), wobei u zweimal stetig differenzierbar sei. Wir set-

zen m = E(L), ¢ = ¢(L). Dann gilt einerseits
u(c) = u(m) +u'(m)(c — m) = u(m) —u'(m)o

und andererseits

1
u(c) = EX(u) =~ EX |u(m) + o/ (m)(x — m) + §u"(m)(;c —m)?
(3.1)
1
= u(m) + §u”(m)V(L) (3.2)
Zusammen: o & —1MV(L). Diese Naherung heiftt Arrow-

2 u'(m)
Pratt-Approximation der Risikopriamie.
An dieser Darstellung erkennt man sehr gut die Quellen der
Risikopramie: (1) Objektives Risiko (hier gemessen durch
die Varianz) und (2) Risikoneigung (hier gemessen durch

die Kriimmung % der Nutzenfunktion).

3.2.8 Definition: Die Funktion v : S — R sei zweimal



stetig differenzierbar und strikt wachsend. Dann heifst

der Arrow-Pratt-Koeffizient der absoluten Risiko-

aversion von u an der Stelle x.

3.2.9 Bemerkung: Wir bemerken, dass

u//(x) B %

Also erfasst a(x) die prozentuale (relative) Anderung des
Grenznutzen u' , wenn sich z um eine kleine Einheit dn-

dert.

Der Koefhizient misst die Kriimmung der Nutzenfunkti-
on. Wiirde man nur u”(x) als Mak der Risikoaversion ver-
wenden, so ware dieses Mak nicht invariant beziiglich affi-
ner Transformation. Da sich bei affinen Transformation die
Préferenzen nicht dndern, sollte auch ein Maf fiir die Ri-
sikoaversion invariant beziiglich affiner Transformationen

seln.

3.2.10 Bemerkung: i.) Fiir den Fall, dass a(x) = « gilt,

kann man nachweisen, dass u von der Form
u(x) =a—be**

ist. Funktionen diesen Typs heiffen CARA-Funktionen (Con-



stant Absolut Risk Aversion).

ii.) Fiir den Fall, dass fiir den Koeffizienten der absoluten
Risikoaversion a(z) = 1,2 € S = (0,00) mit einer Kon-
stanten v > 0 gilt, kann man nachweisen, dass — bis auf
eine affine Transformation — die Nutzenfunktion von der

Form

u(z) = log(z), falls v =1 (3.3)
1
u(z) = = fya:l_”y, falls v # 1 (3.4)

ist. Funktionen diesen Typs CoRRA-Nutzen-Funktionen
(Constant Relative Risk Aversion)[| Wir bemerken
du' x

v =a(r)r = o

Also erfasst «y die prozentuale Anderung des Grenznutzens

u', wenn sich  um 1 Prozent andert.

3.3 u-Optimale Portfolio und SDF

3.3.1 Bemerkung: Wir betrachten die Entscheidung ei-
nes Investors, der sein Anlagevermogen wy > 0 entweder
risikolos zum Zins ¢ oder riskant mit Rendite R anlegen

kann (R ist eine Zufallsvariable). Das Endvermogen ist

'Ublich ist die Abkiirzung CRRA. Ein Student hat CoRRA vorgeschlagen.



die Zufallsvariable

V=(1+9hy+ (1+R)h
h0+h1:wo

wobei hy > 0 der risikolos angelegte und h; > 0 der riskant
angelegte Betrag ist.

Wir konnen die Restriktion Ag + h1 = wy verwenden, um
das Optimierungsproblemen auf ein Problem mit einer Kon-

trollvariable zu reduzieren:

V=(1+1wy+ Xh
X=R—1.

Wir unterstellen, dass es fiir die Praferenzen eine sogenann-

te von-Neumann-Morgenstern gibt:
E(u(V)) = E(u((1 4 i)wy + Xhy)).

Wir unterstellen dabei, dass v : S — R stetig differenzier-
bar, strikt konkav und strikt monoton steigend ist. Ferner
unterstellen wir, dass stets V' € S gilt und w(V) fiir alle
hy integrierbar ist. Zur Analyse des Optimierungsproblem

betrachten wir
H(hy) = E[u((1+i)wy + Xhy)] .

Dann ist H strikt konkav und stetig auf [0, wy| ist.



Wie zuvor betrachten wir die erste Ableitung:
H'(hy) = E[u'((1+ 1wy + Xhy) X],

wobei wir voraussetzen, dass H differenzierbar ist (die Dif-

ferentiation und der Erwartungswert konnen vertauscht wer-

den).

Dann gilt

H'(0)=E[u((1+i)w) X]=0&EX)=0< E(R) =1.
Weiterhin

e Wenn E(R) > i, dann H'(0) = E [v/((1 + 7)wy) X]| =
u ((14+17)wy)E[X] > 0. Unter der Bedingung E(R) >
v wird der Investor einen positiven Betrag riskant an-

legen.

e Gilt jedoch E(R) < i gilt, so ist hy = 0 optimal, d.h.

der Anleger legt sein Vermogen komplett risikolos an.

3.3.2 Beispiel: Fiir die Priferenzen eines Investors gebe
es eine vNM-Darstellung mit u(s) = In(s), s € S = (0, 00).
Der Investor kann in eine riskante Anlageform mit Rendite
R investieren, wobei R = R" mit Wahrscheinlichkeit 0 <
p < 1 und R = RY mit Wahrscheinlichkeit 1 — p. Zudem
kann der Investor Geld risikolos zum Zins ¢ anlegen. Dabei

soll R? < i < R" gelten.



Dann gilt

E(R — i)
(R*—1i)(i — R7)

3.3.3 Bemerkung: Wir wollen jetzt unterstellen, dass das
Portfolioproblem eine innere Losung h] > 0 hat, die durch

die Bedingung erster Ordnung
E [u'((1+ 2wy + Xhi) X] =0

charakterisiert ist. Dann gilt

SOZ]E [13251] :]E[m81] )
wobei £ = Eﬁ;&ﬁ))] und m = 1%@

Die Gleichung Sy = E [mS;]| kennen wir insbesondere aus
dem EPFMM. Ein solches m heift stochastischer Dis-
kontfaktor. Wir erhalten somit eine Herleitung des sto-
chastischen Diskontfaktors m auf der Grundlage der Ent-

scheidungstheorie.



4 Portfoliooptimierung

4.1 p-o-optimale Portfolios

4.1.1 Bemerkung: In diesem Abschnitt werden sogenann-
te p-o-optimale Portfolios besprochen (p steht fiir die er-
wartete Rendite und o fiir die Standardabweichung der
Rendite). Sehr gute Uberblicke zur Mathematik der p-o-
optimalen Portfolios geben Back [I Kapitel 5] und Roll
[38]. Die origindren Arbeiten zu diesem Thema stammen

von Markowitz [31], 132].

4.1.2 Definition, Notation und Bemerkungen: i.) Ein
Portfolio ist ein Vektor h € RY. Dabei erfasst h; die
Stiicke (Anzahl) der vom Wertpapier mit der Nummer i
gehaltenen Wertpapiere. Leerverkiaufe h; < 0 sind zugelas-

SEIl.

ii.) Ein Vektor w € RY mit wi1 =1 (also le\il w; = 1)
heilt Anteilsvektor. Wir werden unten regelmafbig An-

teilsvektoren betrachten, die sich auf ein Portfolio h



beziehen. In diesem Fall haben wir
h;Vy
Zj'vzl hjvoj

Vi bezeichnet den Preis des Wertpapiers mit der Kenn-

(4.1)

w; =

nummer ¢ zum Betrachtungszeitpunkt ¢ = 0; wir verwen-
den einen Superindex um das Wertpapier anzugeben und
den Index fiir den zeitlichen Bezug. In diesem Fall werden
wir aus sachlogischen Griinden Vj > 0,4 = 1,..., N vor-
aussetzen.

iii.) Eine Rendite ist eine quadrat-integrierbare Zufallsva-
riable R : (2, F,P) — R, die sich in der Form

V-

R
VE) )

Vo >0

schreiben lédsst. Die Rendite eines Wertpapiers heifst in die-
sem Kapitel riskant, falls V(R) > 0 ist. V{ > 0 bezeichnet
den Preis des Wertpapiers zum Betrachtungszeitpunkt und
V' den Preis am Ende des Anlagehorizonts t = 1, wobei wir

den Index fiir den Zeitpunkt weglassen.

4.1.3 Bemerkung: i.) Alle Zufallsvariablen sind auf dem
gleichen Wahrscheinlichkeitsraum (€2, F, IP) definiert.

ii.) Fiir die Renditen dieses Kapitels unterstellen wir stets
V,R, V', Rl € L*(Q, F,P). Also existieren Erwartungswer-
te, Varianzen und die Kovarianzen.

iii.) Eine Rendite ist also ein Quotient der Form R =
(V —Vo)/Vo, Vo > 0. Im folgenden werden wir Resulta-



te (Formeln) prisentieren, die sich auf Renditen beziehen.
Fiir diese Resultate ist es dabei manchmal irrelevant, dass
R sich als Quotient schreiben lasst. Trotzdem wird in den
Satzen der Ausdruck Rendite verwendet, da dies die im

Fokus stehende Anwendung ist.

iv.) Im folgenden werden wir Resultate (Formeln) prasen-
tieren, die sich auf Anteilsvektoren beziehen. Fiir diese Re-
sultate ist es dabei manchmal irrelevant, dass es sich um

Anteilsvektoren handel, d.h. einige Resultate gelten auch

fiir Vektoren ohne eine Darstellung der Form (4.1)).

0.06
(]

Erwartete Rendite
0.04
1

0.02
1

0.00
L

1
0.00 0.05 0.10 0.15
Standardabweichung

Abbildung 4.1.1: Besserrichtung. Die Abbildung zeigt
drei uniforme Besserrichtungen und eine
Richtung dessen Einschatzung von der
Risikoneigung des Anlegers abhangt.

4.1.4 Bemerkung: Wir untersuchen in diesem Kapitel

die folgende Situation. Anleger konnen in N Wertpapiere



(WPe) investieren, die durch ihre Renditen (R!, ..., RV)
charakterisiert sind. Gegebenenfalls gibt es auch eine risi-
kofreie Anlageform mit fester Rendite R/ € R. Wir un-
terstellen dabei, dass die Anleger von den Renditen nur
den Erwartungswert (die erwartete Rendite) und die Vari-
anz (oder Standardabweichung) beachten. Genauer: Haben
zwel Anlageformen (Wertpapiere, Geldmarktkonto, Portfo-
lios, .... ) die gleiche Varianz, dann wird jenes vorgezogen,
dass eine hohere erwartete Rendite hat. Haben zwei An-
lageformen die gleiche erwartete Rendite, dann wird jenes
vorgezogen, dass die geringere Varianz hat. Die Préaferenzen
von p-o-Anleger sind in der Abbildung angedeutet.
Ausgehend vom schwarzen Punkt zeigen die schwarzen und
der griine Pfeil in Richtungen, die von allen p-o-Anlegern
bevorzugt werden. Ob ein bestimmter Anleger die Bewe-
gung in Richtung des blauen Pfeils als eine Verbesserung
empfindet, hangt hingegen von seiner Risikoneigung ab.
Obwohl wir diese Risikoneigung nicht konkreter spezifizie-

ren, konnen wi weitreichende Resultate ableiten.

4.1.5 Satz: Gegeben seien die Renditen R = (R?, ..., RM)?
von N € N Wertpapieren. Ein Investor sei im Portfolio h

engagiert und es sei

nVE bV
Vg

w; =

wobel VOj > 0,7 =1,...N Vg > 0. w = (wy,...,wy)"
ist der Anteilsvektor des Portfolios h. Dann gilt fiir die



Rendite
V-V

Vo
des Gesamtwertes V = by V! + ... + hx VY zum Portfolios
h.

R—

V-V
Vo

N
R = :ZwiRi:wTR::RW .
1=1

» Der folgende Hilfssatz enthalt Aussagen und Formel, die

aus der Wahrscheinlichkeitstheorie bekannt sind.

4.1.6 Hilfssatz: i.) Gegeben sei der Zufallsvektor R =
(RY,...,R") mit N € Nund v € R". Dann ergibt sich
fiir

N
RY = ZU@Ri =vR

i=1
der Erwartungswert und die Varianz als

E(RY) = Z vE(R) =vIER) = v,

N N
V(RV) == Z Z Ui/UjEij = VTEV.

i=1 j=1

ii.) Gegeben seien ein Renditevektor R und Vektoren vy, vy €
RY. Es sei

RV = viR,i=12



Dann ist

cov(R'L, R¥?) = v{ Zvs.

iii.) Gegeben seien die Renditen R = (R!, ..., RY)T von
N € N riskanten Wertpapieren. Dann gilt fiir die Rendite

RY eines Portfolios mit Anteilsvektor w, dass

cov(R', RV)
cov(R, RY) = : = Yw.
cov(RY, RY)

4.1.7 Bemerkung: Wegen der letzten beiden Bemerkun-
gen konnen wir also die erwartete Rendite und die Varianz
der Rendite eines Portfolios mit Anteilsvektor w mit den

Formeln

E(RY) = Z wE(R) = w'ER) = w'p,

N N
V(RW) = Z Z wiijZ-j = WTEW.

i=1 j=1

bestimmen.

Besonders wichtig ist auch die Beobachtung, dass die er-
wartete Rendite eines Portfolios und die Varianz
der Rendite eines Portfolios unabhangig von der
insgesamt eingesetzten Investitionssumme sind (Ska-

lenfreiheit).



» Der folgenden Satz beschreibt das konservativste Port-

folio aus riskanten Wertpapieren.

4.1.8 Satz: Gegeben sei ein Vektor R = (R!, ..., RV)T
mit den Renditen von N € N riskanten Wertpapieren. Die
Varianz-Kovarianz-Matrix ¥ € M (N, N, R) sei positiv de-
finit. Dann hat das Optimierungsproblem

min w'Xw uwdN 1'w=1 (4.2)
weRN
die Losung
VI 2_11

Beweils: Fiir den Beweis verwendet man die Methode von

Lagrange. Vgl. Back [1], S. 82-83]. O

4.1.9 Bemerkung: Varianz-Kovarianz Matrizen sind stets
positiv semidefinit. Die Voraussetzung, dass 3 sogar posi-
tiv definit ist, impliziert, dass X invertierbar ist. Ferner
folgt, dass es nicht moglich ist, aus den riskanten Wert-
papieren ein Portfolio zu bilden, dass risikofrei ist. Dieser
wohlbekannte Sachverhalt wird im folgenden Lemma fest-

gehalten und bewiesen.

4.1.10 Lemma: Gegeben seien die Renditen R = (R, ..., RV)T
von NV € N riskanten Werpapieren. Die Varianz-Kovarianz-

Matrix 3 der Renditen sei positiv definit. Dann gibt es



kein nicht-triviales Portfolio aus diesen Wertpapieren, des-

sen Rendite risikofrei ist.

Beweis: Es sei w € R”. Dann gilt fiir die Varianz der Ren-
dite R, V(RY) = w!Xw. Aus V(RY) = 0 folgt w = 0 |da
3. positiv definit ist|. Also ist das Nullportfolio das einzige

Portfolio mit Varianz Null.

4.1.11 Definition: Gegeben seien die Renditen R = (R, ...

von NV € N riskanten Werpapieren. Die Varianz-Kovarianz-
Matrix 3 der Renditen sei positiv definit. Ein Portfolio mit
Anteilsvektor
W 11
17311
nennen wir gvm-Portfolio (gvm fiir global varianzmini-

mal).

4.1.12 Bemerkung: Wenn ein Anleger nur auf Risiko-
vermeidung fokussiert ist und das Risiko durch die Va-
rianz erfasst wird, dann ist das gvm-Portfolio fiir diesen

Anleger optimal.

» Der folgende Satz betrachtet die Aufgabe unter allen
Portfolio mit einer Zielrendite p*, dasjenige Portfolio zu
ermitteln, das eine minimale Varianz hat. Dieses Portfo-

lio hat typischerweisd!] eine hohere Varianz als das gvm-

Tmmer dann, wenn die Zielrendite von der Rendite des gvm-Portfolio abweicht,
ist die Varianz des ermittelten vm-Portfolios grofer.

RN)T



Portfolio.

4.1.13 Satz (Grenzportfolio bzw. varianzminimale

Portfolio): Gegeben seien N Wertpapiere mit riskanten
Renditen R = (R!, ..., RM)! wobei p = E(R) linear un-
abhéingig von 1 und X positiv definit ist. Dann ist

va _ E—IMB—I[II*

der Anteilsvektor des varianzminimalen Portfolios mit er-
warteter Rendite p*. Das Portfolio w'™ 16st also das Op-

timierungproblem

min w/Xw wdN 1'w=1wp=/p"
weRN

Dabei ist

M = (u:l) € M(N,2,R)
pfo= (pf, D' e M(2,1,R)
B = M'S7'M e M(2,2,R).

vm steht fur varianzminimal.
Beweis: Der Beweis basiert wieder auf der Methode von

Lagrange (vgl. Zivot [52, S. 15]).

4.1.14 Bemerkung: Die Bedingung, dass 1 linear unab-
hangig von p ist, bedeutet, dass die erwarteten Renditen

nicht alle tibereinstimmen.



4.1.15 Satz, Definitionen und Bemerkungen (Grenz-
portfoliohyperbel): Gegeben seien N Wertpapiere mit
riskanten Renditen R = (R!, ..., RY)T, wobei p = E(R)

linear unabhangig von 1 und X positiv definit ist. Definiere
A=p'S . B=p's11,0=1'211

Dann ist

o A — 2B,LLRW + C/Jz?{w
B AC — B? (44)

ORW

die Varianz der Grenzportfolio mit erwarteter Rendite

ILLRW.

Die Funktion

A—2Bu+Cp® \'
AC — B2 7

R—>]R2,,ul—>(

definiert eine Kurve in der o-p-Ebene, die die Gestalt ei-
ner um 90 Grad gedrehten Parabel hat. Die Kurve heifst

Grenzportfolioparabel. Die Kurve

T
A—2Bu+ Cu?
2
R—)R,MH(\/ 10— B2 ,,u)

heifkt Grenzportfoliohyperbel.

Fiir p # g ist die Steigung der Grenzportfoliohyperbel

oF
e 5
do  9E°

o
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Abbildung 4.1.2: Eine Grenzportfoliohyperbel. Die Port-
folios die zu dem schwarzem Arm geho-
ren heifsen effizient. Die, die zum rotem
Arm gehoren, ineffizient. Die griinen
Punkte gehoren zu den drei gegebenen
Wertpapieren aus den Portfolio gebildet
werden konnen.

wobel

A —2Bu+ Cu?
F(u,o) = 05 — o’

Also ist die Steigung der Grenzportfoliohyperbel

dp  o(AC — B?)

do Cu—B

4.1.16 Bemerkung: Die Abbildung zeigt exempla-
risch eine Grenzportfoliohyperbel. Die p-o auf dem durch-
gezogenen schwarzen Arm gehoren zu den effizienten Port-
folio. Auch die Portfolios, die zu dem gestrichelten Arm
gehoren sind Grenzportfolio; diese Portfolio heifken ineffi-

zient. Ein p-o-Anleger wiirde — wenn seine Wahl auf die



riskanten Wertpapiere beschrinkt ist stets effiziente Grenz-
portfolio wihlen, da diese so weit wie moglich im Nord-
Westen liegen. Wie wir gesehen haben sind dies die Besser-

richtungen.

4.1.17 Bemerkung: Wir betrachten den Fall mit N = 2.
Dann ist der Anteilsvektor von der Form w = (w, 1 — w).

Fir die erwartete Rendite erhalten wir
E(RY) = wp + (1 — w)ue
und fiir die Varianz gilt

V(RY) = w*o? + 2w(l — w)poios + (1 —w)os, (4.5)
p = cov(R', R?)/(0103). (4.6)

Wenn wir eine Zielrendite p* vorgeben, dann kénnen wir

w explizit bestimmen:

po=wpn + (1 —w)pe = wlp — p2) + pio
P o

& W= .
M1 — 2

Wenn man dieses w in die Varianzformel einsetzt, dann

erhalt man

f11— 12 [11—p12
pr=po \ ( pr=p*
+2 (m—m) (m—uz) po10y.  (4.8)

Fiir diesen Fall und in dieser Form erkennt man ganz un-

% 2 “\ 2
0% = V(RY) = (M) a§+(u) o2 (47)

mittelbar, dass die Grenzportfolio in der p*-o%w eine Pa-



rabel bilden (das wussten wir aber schon aus Satz {4.1.15)).

Die Darstellung zeigt auch den Einfluss der Korrelation p
auf die Form der Kurve der Grenzportfolio. In der Abbil-
dung sind zwei Wertpapiere WP 1 und WP 2 mit
w1 = 0.14,01 = 0.16, us = 0.04, 017 = 0.08 gegeben. Die
Abbildung zeigt die Grenzportfolio fiir unterschiedliche p.
Fiir p = —1 erhélt man einen Kegel. In diesem Fall ist ein
Hedge moglich, so dass die Varianz der Rendite des Portfo-
lio Null wird (was kann man dann iiber X sagen?). Das ist
natiirlich keine Uberraschung, denn wenn die Wertpapiere
perfekt negativ korreliert sind, dann kann man ein Wertpa-
pier mit dem anderen Wertpapier perfekt hedgen. Wir be-
trachten zunachst den Bereich zwischen 1 und ps. Fiir gro-
kere p verschlechtern sich hier die Hedging-Moglichkeiten.
Die Hyperbel entfernt sich von der Ordinate. Wenn man
den Bereich oberhalb von 17 betrachtet, dann erkennt man,
dass die sich Hebelmoglichkeiten verbessern, wenn p grofser

wird.

An dieser Stelle merken wir an, dass fiir N = 2 die Wertpa-
piere selbst Grenzportfolio sind, d.h. die WP 1 und WP 2

liegen wie in der Abbildung ersichtlich auf der Grenz-
portfoliohyperbel. So gilt das jedoch nur fir N = 2.

4.1.18 Bemerkung: Bisher haben wir nur den Fall mit
N riskanten Wertpapieren betrachtet. Im folgenden unter-
stellen wir, dass der Anleger auch Zugang zu einer risiko-

losen Anlageform hat. Darunter wird typischerweise eine
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Abbildung 4.1.3: Unterschiedliche Rho. Die Abbildung

zeigt die Grenzportfolio fiir unterschied-

liche Korrelationen.

staatliche Anleihe mit hochster Bonitat und mit passender

Laufzeit verstanden. Wir werden sehen, dass man in die-

sem Fall die Anlageentscheidung gedanklich trennen kann.

(1) Zunéchst wird wie gehabt das riskante Anlage Univer-

sum betrachtet und es werden insbesondere die Grenzport-

folio bestimmt (diese ist in der Abbildung |4.1.4

fiir drei

WP angegeben). (2) Unter den riskanten Portfolio ist ei-

nes in Kombination mit der risikolosen Anlageform ausge-

zeichnet; namlich das sogenannte Tangentialportfolio (die-
ses Portfolio ist in der Abbildung eingetragen. Erken-



nen Sie das spezielle dieses Portfolio). Der Anleger kombi-
niert dann dieses Portfolio nach seinem Risiko-Gusto mit
der risikofreien Anlage, d.h. der Anlieger bildet Portfolio
aus dem Tangentialportfolio und der Anleihe. Alle p-o die-
ser Portfolio — ohne Leerverkdufe des Tangentialportfolio —
liegen in der Abbildung auf der durchgezogenen Halbge-
raden, die durch den roten und den blauen Punkt gehen.
Portfolio, die oberhalb der Geraden liegen sind nicht er-
reichbar und Portfolio, die unterhalb der Geraden liegen,
sind nicht optimal. Ein Anleger, der relativ risikoavers ist,
wiirde ein Portfolio wie das durch den roten Stern markier-
te wahlen, wahrend der blaue Stern die Wahl eines weniger

risikoaversen Anlegers markiert.

4.1.19 Definition und Notation: Es seien N Wertpa-
piere mit riskanten Renditen R = (R!, ..., RV)T gegeben
sowie eine risikofreie Anlageform mit fixer Rendite R/ € R.
Ein Portfolio aus den N riskanten Wertpapieren und der
risikofreien Anlageform wird durch Angabe des Anteils-
vektors w € R”Y und dem Anteil 1 — «, der risikolos
investiert ist, charakterisiert. Fiir den Anteilsvektor die-
ses Portfolio aus NV + 1 Anlageformen schreiben wir w =

(qwy, ..., cwy, 1 — a)l.

Wir bemerken, dass man einen Vektor w € RY mit o =
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Abbildung 4.1.4: pu-o-Diagramm zur [llustration der ge-
danklichen Trennung wie in dieser Be-
merkung besprochen.

Quelle: Eigene Darstellung

Zf\il w; # 0 (und 1.A. a = Zf\il w; # 1) in der Form

W = (wla ’wn)T
Wy wWN
_ (@Y gy
(8% (8%

schreiben kann, wobei dann 22{1 w; = 1 gilt. Dann erfas-

sen die w; die Aufteilung des Vermogens, dass in riskante

Wertpapiere angelegt ist, und z.B. Zf\il w; = a > 1 wiirde

bedeuten, dass mehr als 100 Prozent des Anlagewertes in

den NNV riskanten Wertpapieren investiert ist.



Einen Anteilsvektor w = (awy, ..., cwy,1 — a)! geben

T an, wobei dann

wir auch in der Form (w1, ..., 0y, 1 — «)
o= Zf\il ;. Wenn wir einen Vektor w € R als Anteils-
vektor bezeichnen, obwohl w’1 # 1, dann meinen wir den

Anteilsvektor (w!,1 — a).

Ist w der Anteilsvektor fiir die riskanten Wertpapiere 1, ..., N

T 6in Anteilsvektor fiir das

und w = (awy, ..., cwy, 1 — @)
um die risikolose Anlageform erweiterte Portfolio. Dann
gilt (natiirlich)
N
(cwr,...,awy, 1 —a)-1=1— OH‘ZOZ’UJ@'
i=1

N
:1—oz+oszZ-:1.
i=1

4.1.20 Beispiel: Es sei w = (0.7,0.3) und a = 0.4. Fiir
das Portfolio gilt: 40% des Vermogens werden in zwei Wert-
papiere investiert und 60 % am Geldmarkt angelegt. Von
den 40 %, die in Wertpapiere investiert werden, werden 70
% in das erste Wertpapier investiert. In der oben gefiihrten
Notation w = (0.4 - 0.7,0.4 - 0.3,0.6) = (0.28,0.12,0.6).
Alternativ kann man das Portfolio auch durch den Vek-
tor w = (0.28,0.12)" angeben. In diesem Fall muss man

a = 0.28 4 0.12 = 0.4 ausrechnen (mitdenken).

4.1.21 Satz: Es seien N Wertpapiere mit riskanten Ren-
diten R = (R, ..., RM)! gegeben. Gegeben sei ferner ein



risikoloses Wertpapiere mit Rendite R/. Wir betrachten
das Portfolio mit Anteilsvektor w = (qwy, ..., cwy, 1 — ).

Fiir die Rendite RV dieses Portfolios gilt:

RY = Rf + 28 (R _ R/)
O Rw
i E(RY) — R/
]E(Rw)zRfi( S R)-JRW,
O Rw

wobei w = (w1, ..., wy)’ der Anteilsvektor der riskanten
Wertpapiere ist. Dabei gilt in den obigen Gleichungen +
fir a > 0 ist und — fiir a < 0.

Beweis: Fiir die Rendite RV gilt

R =(1-a)R' +aR"”
RY = w'R.

Fiir die Varianz des Portfolio gilt

05w = V(RY) = V((1 — a)R' + aRY) = o*V(RY) = a’0%w,

2

also O'?%W = a?o%hw. Ist a > 0, so gilt

opw =sd(RY) = a - opw.

Wir erhalten fir a > 0

RY = Rf + 2 (R™ — RI).

O Rw

Fiir den Fall a < 0 erhalten wir in analoger Weise nur mit



vertauschtem Vorzeichen (da opw = (—a))opw)

O RWY0

RY =R/ - (RY — RY).

O RwW
Zusammengefasst erhalten wir

E(R¥) = R/ + (E(RW) — Rf) O .

O Rw

4.1.22 Bemerkung: Wenn wir Portfolio bestehend aus
riskanten Wertpapieren und der risikolosen Anlage betrach-
ten, dann erhalten wir also einen affinen Zusammenhang
zwischen der erwarteten Portfoliorendite E(RY) und der
Standardabweichung der Portfoliorendite opw, wobei die
Steigung dem sogenannten Sharpe-Ratio des risikobehaf-
teten Teils entspricht. Dieser Zusammenhang hat die fol-
gende Interpretation: Wenn das Risiko erfasst durch die
Varianz um eine Einheit ansteigt, dann steigt die erwar-
tete Rendite um das Sharpe-Ratio an. Das Sharpe-Ratio
erfasst also die Risikovergiitung je Einheit Risiko. Hier
sollte man beachten, dass eine Variation von « mit einer
Variation von opw, einhergeht und letztere wird durch den

in Rede stehenden affinen Zusammenhang erfasst.

4.1.23 Definition: Der Quotient

E(RY) — R/

O Rw

SRY =

heift Sharpe-Ratio/Sharpe-Quotient des Portfolio mit

Anteilsvektor w.



4.1.24 Bemerkung: Der Sharpe-Quotient erweist sich als
sehr niitzlich. Wir betrachten dazu zwei Portfolio mit An-
teilsvektoren w; und wy bestehend aus riskanten Wertpa-
pieren. Wir unterstellen zur Vereinfachung, dass die Stan-
dardabweichungnen der Renditen iibereinstimmen: opw; =
orwe. Wir unterstellen ferner, dass der Sharpe-Quotient des
ersten Portfolio grofer als der des zweiten ist: SR' > SR?.
Wenn diese beiden Portfolio jeweils mit der risikolosen An-

alge kombiniert werden, dann ergeben sich zwei Kegel:

E(R)) = R/ + SR'o
E(Ry) = R/ + SR*0

Die beiden Kegel sind in der Abbildung dargestellt.
Der blaue Kegel gehort zu dem kleineren Sharpe-Quotienten
(wobei die Standardabweichungen o.E.d.A. iibereinstim-
men). Man erkennt unmittelbar, dass der Kegel strikt gro-
er ist, wenn der Sharpe-Quotient groker ist. Alle Anle-
ger wiirden dementsprechend lieber das Portfolio 1 mit
der risikolosen Anlage mischen als das Portfolio 2. In der
Tat sind aus Sicht der Anleger Portfolio mit Anteilsvek-
toren am besten, deren betragsméafiger Sharpe-Quotient
|SR"™| maximal ist, da dann der Kegel am meisten aufge-
spannt ist und der Anleger Kombinationen weiter im Nord-
Westen erreichen kann. Diesen Aspekt werden wir spater
aufgreifen. Die Abbildung zeigt, dass ein Portfolio mit
einem negativen Sharpe-Quotient ,attraktiver sein kann

als ein Wertpapier mit einem positiven aber betragsmafig



kleineren Sharpe-Quotienten. Hier wiirde ein Anleger mit
Leerverkiaufen des griinen Wertpapiers und einer passen-
den Anlage am Geldmarkt eine besserer erwartete-Rendite-
Standardabweichung Kombination erreichen als mit dem
blauen Wertpapier (In einigen Quellen wird iiber diesen
Fall salopp hin weggegangen und formuliert, dass der Sharpe-

Quotient maximal sein solle).
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Abbildung 4.1.5: Unterschiedliche Sharpe-Quotienten.
Der griine Kegel gehdrt zu dem Port-
folio mit dem grokerem Sharpe-
Quotienten. Die durchgezogenen Linien
gehoren zu o € [0, 1], die gepunkteten
zu o > 1 (gehebelte Postion) und die
gestichelten zu o < 0 (Leerverkauf).

Quelle: Eigene Darstellung
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Abbildung 4.1.6: Negativer Sharpe-Quotient. Der grii-
ne Kegel gehort zu dem Portfolio mit
einem negativen Sharpe-Quotienten.
Dieses Wertpapier ist interessanter,
da es bei einem entsprechenden Leer-
verkauf eine besser Rendite-Varianz-
Kombination erlaubt.

Quelle: Eigene Darstellung



4.1.25 Satz (Grenzportfolio): Gegeben seien N Wert-
papiere mit riskanten Renditen R = (R!, ..., R")T, wobei
der g = E(R) nicht zu 1 proportional und X nicht singu-
lar ist. Gegeben sei ferner eine risikofreie Anlageform mit
Rendite R/ € R, wobei R/ # p"w?8™. Dann hat das Op-
timierungsproblem

min w' 2w uwdN (u—R'1)'w=p"—R' (49

weRN
die Losung

~ % /’L*_Rf -1 f
V= S R ()

Die so beschriebene Portfolio definieren einen Kegel in der

o-u-Ebene den wir Grenzportfoliokegel nennen.

Beweis: siehe Back [1]

4.1.26 Lemma: Die Varianz der Rendite RV eines Port-
folios mit Anteilsvektor w = (wy,...,wy,1 — a)l, W =
(1, ..., wn) T oo = SO0 by st
N
V(RY) =V((1 - )R + ) wiR) =W Zw.

1=1

4.1.27 Bemerkung: Wir beachten zuniichst a = 325 | W,

2Beachte, dass W* nicht notwendigerweise ein Anteilsvektor ist, d.h. i.A. gilt

.....



und

(v —R')'wW =y — R
& ,uTW—ozRf:,u*—Rf
& p'w4 (1—a)R = p*

Also ist pu* die erwartete Rendite des Portfolios mit An-

teilsvektor w = (W', 1 — «). Im Satz |4.1.25 erfasst die

Nebenbedingung des Optimierungsproblems diesen Sach-

verhalt.

Gemaéfs des vorgehenden Lemma ist die Varianz der Ren-
dite des Portfolios w gerade die Zielfunktion aus dem Satz

4.1.25; V(RY) = wI'Xw Nach Satz {4.1.25] erhilt man ein

Grenzportfolio geméls

W= (W5 1—a), a=1"Ww"

wenn w* wie im vorhergehenden Satz berechnet wird. Also
ist w* ein Portfolio mit erwarteter Rendite p* und minima-
ler Varianz (bzw. Standardabweichung). Solche Portfolio

heifsen Grenzportfolio.

4.1.28 Satz (Tangentialportfoilio): Gegeben seien N
Wertpapiere mit riskanten Renditen R = (R!,..., RV)T,
wobei der u = E(R) nicht zu 1 proportional und X nicht
singulér ist. Gegeben sei ferner ein risikoloses Wertpapiere
mit Rendite R/, die von der Rendite des global varianz-

minimalen Portfolio verschieden ist (d.h. R/ # pfws™™).



Dann ist

1
172 (u— R/1)

ta

w > Ypu— R'1)

der Anteilsvektor eines Tangentialportfolios, d.h. das Port-

folio mit folgenden Eigenschaften:
° (’wta)T 1=1.

e An der zugehorigen Stelle der o-p-Ebene beriihren
sich die Grenzportfoliohyperbel und der Grenzport-
foliokegel.

e Ein Portfolio mit Anteilsvektor w' ist sowohl fiir
einen Finanzmarkt einschliefslich der risikolosen An-
lageform als auch fiir den Finanzmarkt ohne risikolose
Anlageform ein Grenzportfolio (jedoch nicht notwen-

digerweise effizient).
e Der Betrag des Sharpe-Ratio ist maximal.

Beweis: Vgl. Back [1], S. 86-88]. O

4.1.29 Bemerkung: Die Abbildung[4.1.7 fasst die Analy-
se bis hier hin grafisch zusammen. Ein p-o-Anleger ermit-
telt zunachst die Grenzportfolio der riskanten Wertpapie-
re; das ist die Hyperbel in der Abbildung [4.1.7} Dann wird
das Tangentialportfolio (das ist der blaue Punkt) ermittelt.
Dieses Tangentialportfolio wird dann mit der risikofreien

Anlage kombiniert. Alle Kombinationen dieser Art bilden



die Grenzportfolio (einschlieflich der risikofreien Anlage);
das ist der Kegel aus der durchgezogenen Linie und der
gestichelten Linie. Die effizienten Portfolio liegen dann auf

dem oberen Rand des Kegels (die durchgezogenen Linie).

4.1.30 Bemerkung: Der in der Abbildung darge-
stellte Fall kann als der Normalfall angesehen werden. Al-
lerdings ist es auch moglich, dass das Tangentialportfolio
ineffizient ist. Das ist dann der Fall, wenn R/ > E(R8"™)
ist. Diese Situation ist in der Abbbildung dargestellt.
Auch in diesem Fall liegen die effizienten Portfolio auf dem
oberen Rand des Kegels. Allerdings ergeben sich diese Port-
folios durch Leerverkauf des Tangentialportfolio und der
Anlage am Geldmarkt. Das bemerkenswerte ist, dass sich
hier die besten Anlagechance aus der Kombination mit ei-
nem an-und-fiir-sich schlechten Wertpapier ergeben. Dieses
schlechte Wertpapier wird leer verlauft und so werden aus

einen pessimistischen Umfeld Anlagechancen.

4.1.31 Bemerkung: Fiir den Fall, dass eine risikolose An-
lageform existiert kann man das Grenzportfolio mit Rendi-
te p* geméf Satz bestimmen. Alternativ kann man
auch so vorgehen. Man bestimmt zunéchst das Tangential-

portfolio und dessen Rendite R¥*. Dann 16st man




Das Grenzportfolio mit einer erwarteten Rendite von p* ist

dann w = (w,1 — a), w = aw'™.

4.2 CAPM
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Abbildung 4.1.7: u-o-Diagramm. Die schwarze Kurve
zeigt die p-o der Grenzportfolio der ris-
kanten Wertpapiere. Der Kegelrand (aus
durchgezogener und gestrichelter Linie)
zeigt die u-o der Grenzportfolio aller
Wertpapiere. Der blaue Punkt markiert
das p-o des Tangentialportfolio. Die
durchgezogene Linie zeigt die pu-o der
effizienten Portfolio und die gestichelte
Linie die der ineffizienten Portfolio.

Quelle: Eigene Darstellung
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Abbildung 4.1.8: u-o-Diagramm. Die schwarze Kurve

zeigt die p-o der Grenzportfolio der ris-
kanten Wertpapiere. Der Kegelrand (aus
durchgezogener und gestrichelter Linie)
zeigt die p-o der Grenzportfolio aller
Wertpapiere. Der blaue Punkt markiert
das p-o des Tangentialportfolio. Die
durchgezogene Linie zeigt die py-o der
effizienten Portfolio und die gestichelte
Linie die der ineffizienten Portfolio. Hier
hat das Tangentialportfolio einen nega-
tiven Sharpe-Quotienten.

Quelle: Eigene Darstellung
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5 Risikoanalyse

Verteilungsfunktionen werden in allen Biicher zur Wahr-
scheinlichkeitstheorie behandelt; also auch in Henze [1§].
Quantilsfunktionen werden dort auch behandelt und ver-
gleichsweise detailliert in Follmer und Schied [10] unter-
sucht. Quantile und Quantilsfunktionen sind insbesondere
fir die Finanzmathematik (Risikomanagement) von
SEHR groker Bedeutung. In der Tat ist das bekannteste
Risikmals — der Value at Risk — ein Quantil.

5.1 Verteilungsfunktion

5.1.1 Definition: Eine Funktion F' : R — [0,1] heift

Verteilungsfunktion, falls:

e F ist nicht fallend, d.h. x < y impliziert F(z) <
F(y).

e [ ist von rechts stetig, d.h. lim, ,, ,~, F(y) = F(x).

o lim, ., o F(x)=0,lim, o F(x) =1.



5.1.2 Satz: Es sei P ein Wahrscheinlichkeitsmaf auf (R, B).

Dann ist

{ R — [0, 1]
F=
x +— P((—o00, z])

eine Verteilungsfunktion. F(z) = P((—o0,z|) ist also
die Wahrscheinlichkeit, beim Experiment (€2, B,P) ein Er-

gebnis kleiner oder gleich x zu beobachten.

5.1.3 Satz: Es sei FF: R — [0, 1] eine Verteilungsfunkti-
on. Dann gibt es genau ein Wahrscheinlichkeitsmafs P auf
(R, B), so dass P((—o0, z]) = F(x) fiir alle z € R gilt.

5.1.4 Satz: i.) Es sei F' : R — [0,1] eine Verteilungs-
funktion. Dann existiert fiir alle + € R der linksseitige

Grenzwert
lim F(y) = F(z—).

Y—I,y<x

Fiir diesen Grenzwert schrieben wir F'(z—).
Beweis: Vgl. Rudin [40], Seite 95|

ii.) Es sei F' eine Verteilungsfunktion, dann ist die Menge

der Unstetigkeitsstellen hochstens abzahlbar unendlich.

5.1.5 Bemerkung: Die Unstetigkeitsstellen einer Vertei-
lungsfunktion sind nicht notwendigerweise isoliert (vgl. Ru-

din [40], Seite 97]).



5.1.6 Satz: Es sei P ein Wahrscheinlichkeitsmaf auf (R, B)
und F' : R — [0, 1], die durch P wie in (5.1.2)) definierte
Verteilungsfunktion mit F(z) = P((—o0, z]). Dann gilt fiir

alle 7,y € R,z < y:

1) F(z) = P((—o0, 2))

ii.) F(z—) = P((—o0, x))

i) F(z) =1 — P((z, 00))

iv.) Fz—) = 1 — P([z, 0))

v.) P({z}) = F(z) — F(z—) [Sprunghdhe bei z
vi) P((z, y]) = Fly) — F(x)

vii.) P([z,y]) = F(y) — F(a—)

viil.) P((2,y)) = F(y—) — F(x)

ix.) P(lz,y)) = F(y—) — F(z—)

5.1.7 Satz: Es sei f : R — R eine Dichte. Dann ist F' :
R — [0, 1] mit

F(z) = /_ OO f(2)dz

eine Verteilungsfunktion.
Man spricht von der Verteilungsfunktion £’ mit der Dichte

£

5.1.8 Satz: Essei (2 C R hochstens abziahlbar, F = P()
und P ein diskretes Wahrscheinlichkeitsmaf auf (€, F)



mit Zahldichte p. Dann ist F': R — [0, 1] mit

Flz)= > n

ke (—o0,z]NQ

eine Verteilungsfunktion. Das ist eine Treppenfunktion mit

Stufen an den Stellen £ mit Stufenhohe py.

5.1.9 Bemerkung: Es gibt auch Verteilungsfunktionen,
die weder eine Dichte haben noch diskret sind: Verteilungs-
funktionen mit Sprungstellen, die aber keine (reinen) Trep-

penfunktionen sind.

5.2 Quantile, Quantilsfunktionen und

Verallgemeinerte Inverse

5.2.1 Definition: Es sei (2, F,P) eine Wahrscheinlich-
keitsraum, X eine reellwertige Zufallsvariable mit Vertei-
lungsfunktion F' und A € (0,1). Eine reelle Zahl ¢ heift
A—Quantil der Zufallsvariable X, falls

P(X <¢>X und
PX>qg>1—-X\.

In Worten: (i) Die Wahrscheinlichkeit, dass X die Grenze
q nicht iiberschreitet ist mindestens A\ und (ii) die Wahr-
scheinlichkeit, dass X die Grenze ¢ nicht unterschreitet ist

mindestens 1 — ).



» Das ist vielleicht eine/die Gelegenheit in z.B. Fahrmeir et
al. [?, Seite 59 ff| die Abschnitte zu empirischen Quantilen

nachzulesen.
5.2.2 Bemerkung: Es gilt (wir beginnen mit der zweiten
Bedingung aus der Definition)

1-A<PX >gq)
s 1-P(X >q) <A
& Flg—)=P(X <q) < A

Dementsprechend ist ¢ ein A—Quantil der Zufallsvariable

X, falls

5.2.3 Satz: Es sei X eine Zufallsvariable und X ~ F'. Es
sei A € (0,1). ¢ € R ist genau dann ein \-Quantil von X,

WEIlI

1st.

5.2.4 Definition: Es sei F' eine Verteilungsfunktion. Dann



heifst (0,1) 3 A +— ¢ () mit

¢"(\)=inf{g e R: F(q) > A}
=sup{qg € R: F(q) < \}

die obere Quantilsfunktion von F und (0,1) > A\ —
g (M)

¢ (A) =sup{g € R: F(q) < A}
=inf{qg e R: F(q) > A}

die untere Quantilsfunktion von F'.

Insbesondere im Risikomanagement nennt man die unte-
re Quantilsfunktion auch Verallgemeinerte Inverse und

schreibt

F™(A) =q"(A)

5.2.5 Bemerkung: Wie sieht die Menge A :== {q € R :
F(q) > A} aus? Wenn ¢; € A ist und ¢ > ¢ gilt, dann ist
F(q2) > F(q1) > A Also ist auch ¢ € A. Also ist A ein
Intervall der Form (2, co) oder der Form [z, 00). In der Tat
hat das Interval wegen der von-rechts-Stetigkeit von F' die

Form [z, 00). Also gilt

¢ (\)=inf{g e R: F(g) > A}
=min{qg € R: F(q) > A}.

Wir konnen also anstatt des Infimums das Minimum bil-



den. Das Minimum wird angenommen: Es gibt also ein ¢*
mit der Eigenschaft F(¢*) > X und fiir alle ¢ < ¢* gilt
F(q*) < A

Beweis: Angenommen z = inf{q € R : F(q) > A}, aber
F(z) > A gilt nicht. Also F(2) < A. Wir betrachten eine
Folge (¢;) mit ¢; > z und ¢; — z (eine Folge die von links
gegen z konvergiert). Wegen der Stetigkeit von rechts fiir
F gilt F(q)) — F(z). Dann muss es — da F(q) < A\ -
ein 7 mit F(g;) < A und ¢; > 2z geben. Das ist jedoch
ein Widerspruch, denn fiir alle ¢ im Intervall (z,00) gilt

F(q) > A

5.2.6 Satz: Es sei (2, F,P) ein Wahrscheinlichkeitsraum
und X eine reellwertige Zufallsvariable mit Verteilungs-
funktion F'.

(1) Dann ist ¢~ nicht-fallend und von links stetig und
(2) ¢" nicht-fallend von rechts stetig.
(3) Bs gilt () < g*(\).

Beweis: Siehe Follmer und Schied [10} S. 538f]

5.2.7 Satz: Es sei F' eine Verteilungsfunktion. Fiir jedes
A € (0,1) ist die Menge der A\-Quantile das abge-
schlossene Intervall (¢~ (\), g ()\)].

5.2.8 Bemerkung: Wenn F' eine strikt monotone stetige



Verteilungsfunktion ist, dann ist fiir alle A € (0, 1):

¢ (N =q" () =F"(\)

5.2.9 Lemma: Es sei F' eine Verteilungsfunktion und
F©(A\) =q (A\) =inf{z|F(x) > A} = min{z|F(z) > \}

die untere Quantilsfunktion bzw. eine Verallgemeinerte

Inverse von F. Dann gilt fir z € R, A € (0,1)

Flx)> A& x> F (),

Beweis (Siehe Henze [18, 151|): Fiir = miissen wir nur
bemerken, dass & = F(A) = min{z|F(x) > A} geméik
Definition das kleinste x mit F(x) > X ist. Also x > & =
F<()N).

Fiir <= nehmen wir an, dass x > F(\) = T gibt, aber
F(z) < X ist. Wir betrachten eine Folge (x;) mit z; > x
und x; — x. Wegen der Stetigkeit von rechts von F' gilt
F(z;) — F(z). Aus der Konvergenz F(z;) — F(x) und
F(x) < X folgt, dass es ein x; > = > T mit F'(x;) < A gibt.
Es gibe also x; > > F*(\) mit F'(x;) < A. Das ist aber
ein Widerspruch, denn aus z; > 7 folgt F'(z;) > F(z) = .

5.2.10 Lemma: Es sei F' eine Verteilungsfunktion und



U ~ Unif((0,1)). Dann hat die Zufallsvariable
X =F7(U)
die Verteilungsfunktion F'; X ~ F.

Beweis: Siehe Henze [18, 153]. Es gilt geméf des obigen

Lemmas
PX <z)<P(F(U) <x) X =F7(U)
=P(U < F(x)) Lemma
= F(x). VF von Unif

» Auf der Grundlage des vorhergehenden Lemmas, kann
man Zufallszahlen gemélfs einer Verteilung F' erzeugen, wenn
man Zufallszahlen geméf einer Gleichverteilung erzeuge

kann.

5.2.11 Lemma: Es sei X eine Zufallsvariable mit Vertei-
lungsfunktion F'. Ferner sei F' stetig. Dann gilt F/(X) ~
Unif([0, 1]). Also fiir w € [0, 1]

PIF(X)<u)=u

Beweis: Siehe Henze |18, 153].



5.3 Risikomessung

» Der Rest des Paragrafen ist als Vertiefung bzw. Anwen-
dung fiir Risikomanager gedacht und noch arg fragmenta-

risch.

5.3.1 Terminologie und Einfiihrung: Im folgenden stel-
len wir uns vor, dass ein Investor oder Manager das Ri-
siko einer Vermdgensposition analysiert. Den Wert dieser
Vermogensposition bezeichnen wir mit V. Wir stellen uns
ferner vor, dass der Wert in mindestens zwei Zeitpunkten
betrachtet wird. Wir verwenden ¢ = 0 fiir den Zeitpunkt
zu dem der Vermdgenswert fix und bekannt ist. Wir be-
zeichnen diesen Wert mit V. Den Wert V' der Vermogens-
position zu einem zukiinftigen Zeitpunkt sehen wir als eine
Zufallsvariable an, dessen Wert uns fiir den Zeitpunkt ¢t = 1
interessiert. Wir verzichten manchmal bei der Variable V/
fiir den Zeitpunkt £ = 1 auf den Index, d.h. wir schreiben
einfach V' anstatt V;. Wir untersuchen meistens nicht V,
sondern die Veranderung G =V — V; oder den Verlust
L = Vi — V. Trotzdem sprechen wir vom Value at Risk
der Vermogensposition. G bezeichnet einen Gewinn (der
natiirlich auch negativ sein kann). Da wir Risikonanalyse
betreiben, werden wir — der Literatur folgenden — oft die
Variable Verlust L = —G betrachten.

5.3.2 Defintion: Es sei V' ein Vermogenswert und G =
V—Vyund L = —G. Dann ist der Value-at-Risk (V@QR)



von V' zur Risikotoleranz A (eine kleine Zahl, z.B. A =
0.01) die reelle Zahl

VAR\(G) = —qz,(A)
= qp (1= A)
= qr, (1 = A).

Wenn wir Verluste betrachtet (o nahe 1, z.B. o = 0.99)

V@R, (L) = qp, ()
= Iy (o)
— inf{x|Fy(z) > a}

= min{z|FL(z) > o}
dabei heifst o das Sicherheitsniveau (Konfidenzniveau).
Die Abbildung
F™(A) = inf{z|F(z) > A} = min{z|F(x) > A}

die Verallgemeinerte Inverse von F

5.3.3 Satz: Es gilt
VAR (G) = inf{m |P(G +m < 0) < A}.
bzw.

V@R, (L) = inf{m|P(L —m >0) <1—a}



5.3.4 Bemerkung: (1) Wir reden vom Value at Risk von
V', obwohl die Defintion auf G bzw. L Bezug nimmt. Wir
werden auch vom Value at Risk von G oder von L spre-
chen. Gemeint ist das negative des oberen A-Quantil der
Zufallsvariable G bzw. das untere o = (1 — A)-Quantil des
Verlustes L.

(2) Der Value at Risk wird in den Einheiten gemessen, in
denen die Zufallsvariable G gemessen wird, d.h. in der Re-

gel in Geldeinheiten.

(3) Typischerweise wird das fiir die Risikonanalyse relevan-

te A-Quantil gz (A) von G negativ sein.

(4) Der Value at Risk ist wegen der Multiplikation mit -1
so definiert, dass er die Grundlage fiir eine Kapitalanforde-

rung ist; das wird weiter unter noch verdeutlicht.

(5) Wenn man anstatt des Zuwachses G die Verlustvariable
L betrachtet, dann sind fiir den Ubergang drei Anpas-
sung notig: (i) Anstatt der oberen Quantilsfunktion be-
trachtet man die untere Quantilsfunktion. (ii) Anstatt der
Risikotoleranz A berachtet man das Sicherheitsniveau

a =1 — A (iii) Die Multiplikation mit —1 entfallt.

(6) Es ist G+m = —L +m. Also ist G +m < 0 ge-
nau dann, wenn m < L. Wenn wir m als Eigenkapital
auffassen, dann erkennen wir, dass VAR, (G) der kleinste
Eigenkapitalwert ist, der ausreicht eine Insolvenz — hier de-

finiert als Verluste grofser als das Eigenkapital — mit Wahr-



scheinlichkeit A\ zu vermeiden. Man kann also den VQR im
Kontext der Eigenkapitalregulierung unmittelbar an-

wenden. Der VQR ist auch aus diesem Grund popular.

5.3.5 Beispiel: Es sei G ~ N(p,0?) Normalverteilt und
die Risikotoleranz A € (0, 1).

VAR)\(G) = —E(G) - & '(\) - o (5.1)
= -0\ -0 (5.2)
Fiir A = 0.01 erhalten wir ®71(0.01) = —2.33, so dass

VAR (X) = —pu+2.33-0. Ftr A = 0.0001 ist V@R (X) =
—u + 3.09 - 0. Praktisch: Wenn wir den Erwartungswert
und die Varianz von X geschétzt haben und die Annahme
der Normalverteilung angemessen ist, dann konnen wir fiir

den Fall einer Normalverteilung den V@R leicht ermitteln.

5.3.6 Satz: Der Vermogenswert V' sei eine Zufallsvaria-

ble und V) # 0 eine reelle Zahl. Ferner sei R = V‘_/OVO eine

Zufallsvariable mit endlicher Varianz ¢ und Erwartungs-

wert p und die Verteilungsfunktion F'rs: der Zufallsvariable
R = % sei strikt monoton steigend und stetig. Dann

gilt
VARA\(V) = —(u+ 0 - Fpt(\)Vp.

Beweis: Da die Verteilungsfunktion annahmegemaélfs strikt

monoton steigend und stetig ist gilt fiir den VQR die Glei-



chung

Dann folgt
NP (R —H V@R (V) ﬁ)
o Voo o
_p (RSZ < _V@RM(V) B ﬁ)
Voo o
Also

. V@R (V) p
F slz )\ - - : - —
Ry = -

= VAQR,\(V) = —(uu+ 0 - Frs(O))V;

5.3.7 Bemerkung: Der Betrachtungszeitpunkt sei 7 — 1.
Wir wollen eine Risikoeinschéatzung fiir 7 ermitteln. In der

Praxis geht man regelméfig so vor.
i.) Zunéchst erstellt man fiir die Rendite ein Zeitreihenmo-
dell der Form

Ry = py + 0vz,t € 7,

wobei iy = E;_1(Ry), Vi_1(R;) = o7. Ferner wird angenom-
men, dass (z;) ~ iid(0, 1) mit Verteilungsfunktion Fps- ist

((2¢) ist also striktes weifées Rauschen).

ii.) Wir verwenden den Satz ((5.3.6) und schétzen den ak-

tuellen Value at Risk mit

VAR, (V) = —(pr + 0, - Fpe(A)V,_1.



Bei dieser Methoden muss man also zweil statistische Pro-

bleme l6sen:

e Ein Zeitreihenmodell Ry = p; + 02 schiatzen; min-

destens muss man p; und oy schétzen.

e Die Verteilungsfunktion Frs: schitzen.

5.3.8 Bemerkung: Value at Risk ist nicht unumstritten.

Zwei Eigenschaften sind problematisch:
e V@R ist im Allgemeinen nicht sub-additiv.

e VQR beachtet nicht, wie die Verteilung von X links
von VAR gestaltet ist.

5.3.9 Behauptung: Es sei X eine Zufallsvariable mit Ver-
teilungsfunktion F' = F'X. Dann gilt

E(X) = / XdF — /O P ()

Beweis: (den Beweis konnen wir eigentlich noch nicht wiir-
digen, da wir Integration beziiglich dF' und den Umgang
mit solchen Lebesgue-Stieltjes-Integralen noch nicht ken-

nen).

Es sei U eine Zufallsvariable mit U ~ Unif((0,1)). Dann
hat (auch) die Zufallsvariable Y = F*"(U) die Verteilungs-



funktion F'. Also gilt

E(X) = / YdF
= / FE(U)dFY

- / F(u)du.

5.3.10 Beispiel: Wir betrachten X ~ Bernoulli mit Bild(X) =
{=b,a} fir a,b > 0 und P(X = a) = p. Dann ist fiir
A e (0,1)

Fo()) =

—bfalls A <1—p
afalls A >1—p

Es gilt einerseits
E(X)=pa—(1—p)b.

Andererseits

5.3.11 Bemerkung: Es sei X eine Zufallsvariable mit
strikt monoton wachsender C''-Verteilungsfunktion F' und
f = F’. Dann ist F invertierbar. Wir betrachten die Sub-

stitution v = F(z),z = F~}(u) und verwenden die Sub-



stitutionsregel der Integration du = F'(x)dx = f(x)dx

MX%i/Mth:/Fﬂme

5.3.12 Definition: Es sei L eine Zufallsvariable mit L ~
F und E(|L]) < co. Wir definieren

ES.(L) = ! /1 F*™ (u)du

]l -«

TVaRu(L) = E(L|L > F*(a))

ES steht fiir Expected Shortfall und TVaR fiir Tail-
Value-at-Risk.

» Die folgende Bemerkung stellt Resultate iiber den Zu-
sammenhang zwischen ES und TVaR zusammen. TVaR ist

anschaulicher, jedoch nicht sub-additiv. ES ist sub-additiv.

5.3.13 Bemerkung (McNeil et al. |?, Seite 283]): Es
sei L eine Verteilungsfunktion und L ~ F'. Dann gilt

ESa(L) = - ! E[[L - F(@)]'] + F (o)

bzw.

BSu(L) = —— [E[1spe L] + F(a)(1 — a — B(L > F(a))

(LD > F(a)) -y + F(a) - (1 - )
= TVaR,(L) - v+ VaR,(L) - (1 — 7).




Dabei ist

P(L > F<())
]l —«
1 -P(L < F™(a)) 1= F(F(a))

]l —« ]l —«

f')/:

Ferner gilt
E[[L—F ()] =E [Lispe(a)- L] = F(a) - P(L > F*(a)).
Wenn F'¥ an der Stelle I/ (a) stetig ist, dann gilt

ES = E(L|L > F*(a)) = TVaR.

Beweis: Wir beachten

B - Pl = /0 [F*(u) = F(a)]" du
- 1_104/: [ (u) = F ()] du
:1iaLu%WMW_?f?ZjMu
—1iaLH%@mm—F%my
Also
[%JXf—li&[erWMu
1

=—E [[L—F ()] + F(a)




Weiterhin beachten wir

E[[L—-F ()] =E[1ipe(a - (L - F(a))]
=E [1;opc(a)- L] —E [112pe () - FT ()]
=E 1ope(o) - L] = F7 () - P(L > F* ()

Also weiterhin

1

m@X):l_aEUL—F*mﬂ1+F*m)
_ E :]1L>F<—(oz) . L — F<_(Oé> P(L > F“(a)) n F%(a)
Il —«
_ E :]lL>F<—(a) . L: — F<_(Oé) -P(L > F<_(Oé)) L F<_(Oz)
l -«
E :]lL>F<—(a) . L: — FF(Q)P(L > F<_<Oé)) + (1 — OJ)F%(&)

1l —«

5.3.14 Bemerkung: Man kann den ES als Erwartungs-
wert einer Zufallsvariable eines zwei-stufigen Experiments
auffassen: Zunéchst mit Wahrscheinlichkeit 1 — ~ der fixe
Wert F<(a) oder mit Wahrscheinlichkeit v die Zufallsva-

riable L mit Verteilung unter der Bedingung L > F* ().

Dann erhalten wir den Erwartungswert
ES=~-E(LIL>F"(a)+(1—7) - F (a)

mit
P(L > F*(a))

1l —«

’)/:



5.3.15 Definition und Behauptung (Rockafellar und
Uryasev |?, Seite 1449]): Es sei F' eine Verteilungsfunk-

tion. Wir definieren

pro-Tail (. 0 r < F(a)

-«

Fo-Tail(2) ist eine Verteilungsfunktion.

5.3.16 Satz (Rockafellar und Uryasev |?, Seite 1448]):
Es sei L eine Verteilungsfunktion und L ~ F'. Es gilt

TVaR = / LdFet!

= E(L|L im a-Tail).

5.3.17 Beispiel: Es sei Bild(L) ={...,2, 3,4} mit P(L =
2) = P(L = 3) =P(L =4) = 0.02. Es sei a = 0.95.
Dann ist F*(a) = 2. Es ist P(L > F“(a)) = 0.96 und
P(L = F(a)) = 0.02.

Dann gilt einerseits

0.96—0.95 _ 0.98—096  1—0.98
- +3. +4.
1—0.95 1—0.95 1—0.95
0.01 . 002 . 0.02

/L dFa—Tail — 9

—9. T 43. 242
(1).05+2 0.05; 2O.Og "
+6+
—9.-43.244.2_2"""7
165Jr 5Jr 5 5
= — =232

5



Andererseits gilt

)
4 fir 098 <u
< 3 fir 0.98 <u < 0.96

F(u) =
2 fur 0.94 < u < 0.96
|
Also
1 1
/ F™(u)du
l— 014 0.95
= o (2SR + BT} + 4l
1
W (2 (O 96 — 0. 95) + 3 - (0.98 — 0.96) +4- (1 — 0.98))
1 0.16
——(2-0014+3-0.02+4-0.02
0.05 ( * * ) 0.05
= 3.2

Es gibt noch eine dritte Moglichkeit TVaR berechnen. Es

1st

P(L>F=(a)) 004 4
1 —« 005 5

’y:



und weiterhin

(.00 1. 002
0.04 0.04

(N}
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